Date

pi+ proton, pi- proton and pp elastic scattering at 8.5, 12.4 and 18.4 GeV/c

Harting, D. ; Blackall, P. ; Elsner, B. ; et al.
Nuovo Cim. 38 (1965) 60, 1965.
Inspire Record 49759 DOI 10.17182/hepdata.1110

Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.

18 data tables

'1'. '2'. '3'. '4'.

More…

$K^- p$ elastic scattering at 3 GeV/c

Focacci, M.N. ; Focardi, S. ; Giacomelli, G. ; et al.
Phys.Lett. 19 (1965) 441-444, 1965.
Inspire Record 851194 DOI 10.17182/hepdata.30175

None

2 data tables

No description provided.

Only statistical errors are given.


Production and Decays of K^*(1410) in 3.0 GeV/c K$^-$ p Interactions

Focardi, S. ; Minguzzi-Ranzi, A. ; Serra, P. ; et al.
Phys.Lett. 16 (1965) 351-354, 1965.
Inspire Record 49812 DOI 10.17182/hepdata.30377

None

1 data table

No description provided.


K+ P ELASTIC SCATTERING AT 3.5-GeV/c AND 5.0-GeV/c

De Baere, W. ; Debaisieux, J. ; Dufour, J.P. ; et al.
Nuovo Cim.A 45 (1966) 885, 1966.
Inspire Record 50048 DOI 10.17182/hepdata.37572

The elastic scattering of K+ mesons on protons is studied at 3.5 and 5 GeV/c. The total elastic cross-sections are found to be (4.36±0.36) mb and (3.82±0.41) mb respectively. The differential elastic cross-sections, which exhibit characteristic diffraction peaks, are fitted by dσ/dt=(dσ/dt)0eαt, giving α=(3.85±0.12) and (4.70±0.21) (GeV/c)−2 for the two momenta respectively, with |t|⪝0.65 (GeV/c)2. The results are compared to those at neighbouring energies, giving some support to the presence of a real part of the forward scattering amplitude. The diffraction peak shows definite shrinking with increasing momenta. The data are examined in the light of models for high-energy scattering.

1 data table

No description provided.


Photoproduction of Single Positive Pions Between 1.2 and 3 GeV

Buschhorn, G. ; Carroll, J. ; Eandi, R.D. ; et al.
Phys.Rev.Lett. 17 (1966) 1027-1030, 1966.
Inspire Record 50803 DOI 10.17182/hepdata.21795

Differential cross sections for the reaction γ+p→n+π+ are presented for incident photon energies between 1.2 and 3 GeV and pion center-of-mass production angles of 15 to 50 deg.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Observation of Resonance in the $K^{0}_{1}K^{0}_{1}$ System

Beusch, W. ; Fischer, W.E. ; Gobbi, B. ; et al.
Phys.Lett.B 25 (1967) 357-361, 1967.
Inspire Record 52538 DOI 10.17182/hepdata.29450

We have analyzed 2560 events in the final-state K O 1 K O 1 n produced in π − p interactions at 5, 7 and 12 GeV/ c . We observe the S ∗ (1070), f O and A 2 decaying into K O 1 K O 1 . Resonance parameters, cross sections, and branching ratios are given.

1 data table

Cross section times branching ratio.


$\pi^+$ Photoproduction Between 1.2 and 3 GeV at Very Small Angles

Buschhorn, G. ; Carroll, J. ; Eandi, R.D. ; et al.
Phys.Rev.Lett. 18 (1967) 571-574, 1967.
Inspire Record 52312 DOI 10.17182/hepdata.21767

The reaction γ+p→π++n has been investigated for photon energies between 1.2 and 3 GeV and pion c.m. angles from 2.5 to 15°. The cross section is strongly peaked in the forward direction and shows resonance structure in the region of the N32*(1920) and N12*(2190).

10 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of $\pi^0$ in the Backward Direction

Buschhorn, G. ; Heide, P. ; Kotz, U. ; et al.
Phys.Rev.Lett. 20 (1968) 230-232, 1968.
Inspire Record 54459 DOI 10.17182/hepdata.21735

None

1 data table

No description provided.


AN INVESTIGATION OF THE 1.4-GeV/c**2 NUCLEON ISOBAR IN PROTON PROTON INTERACTIONS

Tan, T.H. ; Perl, Martin L. ; Martin, F. ; et al.
Phys.Lett.B 28 (1968) 195-198, 1968.
Inspire Record 52678 DOI 10.17182/hepdata.29198

The production of N ∗ (1400) isobar in the reaction pp → pN ∗+ (1400), where N ∗ (1400) → n π + and p π 0 , is investigated with the aid of one-pion exchange model. The one-pion exchange mechanism does not seem to dominate the production process. The isospin of N ∗ (1400) is found to be I = 1 2 , and the elasticity of the resonance is estimated to be 0.66.

1 data table

Axis error includes +- 0.0/0.0 contribution (?////Due to fitting mass spectrum).


Elastic scattering and single-pion production in proton proton interactions at 6.92 bev/c

Alexander, G. ; Carmel, Z. ; Eisenberg, Y. ; et al.
Phys.Rev. 173 (1968) 1322-1329, 1968.
Inspire Record 55956 DOI 10.17182/hepdata.5540

Elastic scattering and single-pion production in pp collisions at 6.92 BeVc were studied in the BNL 80-in. hydrogen bubble chamber. Partial cross sections for the different final states are given. The reaction pp→nN1238*(pπ+) with σ=1.9±0.3 mb is analyzed and is in agreement with the modified one-pion-exchange model. Single-pion production can be explained as due mainly to two channels: (a) pp→N1238*(pπ+)n, and (b) pp→p(nπ+) or pp→p(pπ0), where the (nπ+) and (pπ0) pairs are in an I=12 state.

4 data tables

No description provided.

No description provided.

No description provided.

More…