This Letter describes a measurement of the muon cross section originating from b quark decay in the forward rapidity range 2.4 < y(mu) < 3.2 in pbarp collisions at sqrt(s) = 1.8 TeV. The data used in this analysis were collected by the D0 experiment at the Fermilab Tevatron. We find that NLO QCD calculations underestimate b quark production by a factor of four in the forward rapidity region. A cross section measurement using muon+jet data has been included in this version of the paper.
The forward muon cross section (per unit rapidity).
The cross section for muons originating from b-quark decay.
Integrated cross sections for muons originating from b-quark decay. The statistical and systematic errors are added in quadrature.
We present a measurement of the differential cross section as a function of transverse momentum of the Z boson in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider during 1994--1996. We find good agreement between our data and the NNLO resummation prediction and extract values of the non-perturbative parameters for the resummed prediction from a fit to the differential cross section.
Differential cross section in the electron channel. The errors contain both statistical and systematic error excluding the overall normalization error.
We report on a measurement of the differential and total cross sections of inclusive production of Xi resonances in Sigma - nucleus collisions at 345 GeV/c.
Feynman X distribution for producton XI(1530)0 on copper and carbon. The quoted errors are statistical.
PT**2 distribution for XI(1530) producton on copper and carbon. The uoted errors are statistical.
Feynman X distribution (times BR) per nucleon for XI(1820) and XI(1950) production. The quoted errors are statistical.
We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720~MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A^V_{ed} was measured for the reaction \pol{2H}(\pol{e},e'n)p at a four-momentum transfer squared of 0.21 (GeV/c)^2 from which a value for the charge form factor of the neutron was extracted.
No description provided.
The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.
Inverse slope paramters of the (1/MT)*DN/DMT distribution.
Rapidity distributions for K+ and K- production.. Statistical and systematic errors added in quadrature.
Rapidity distributions for PI+ and PI- production.. Statistical and systematic errors added in quadrature.
Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $< p_{T}^{\mathrm{D^*}} < 5 $ GeV and $\mathrm{|\eta^{D^*}|} < 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.
The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.
The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.
Integrated cross section in the visible kinematic region.
We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.
Asymmetry measurement with a PT cut of 1.5 GeV on the hadron with the higher PT, and 1.0 GeV on the hadron with the lower PT.
A search for the leptonic decays of W bosons produced in the reaction e^+ p\to e^+ W^\pm X at a centre-of-mass energy of 300 GeV has been performed with the ZEUS detector at HERA using an integrated luminosity of 47.7 pb^-1 . Three events consistent with W\to e\nu decay are found, giving a cross section of 0.9 +1.0 -0.7 \pm 0.2 pb, in good agreement with the Standard Model prediction. The corresponding 95% C.L. upper limit on the cross section is 3.3 pb. A search for the decay W\to \mu\nu has a smaller selection efficiency and yields no candidate events. Limits on the cross section for W production with large hadronic transverse momentum have been obtained. A search for high-transverse-momentum isolated tracks in events with large missing transverse momentum yields results in good agreement with Standard Model expectations, in contrast to a recent report by the H1 collaboration of the observation of an excess of such events.
Measured cross section from three events.
95 PCT CONFIDENCE UPPER LIMIT TO THE PROCESS.
The e^+p charged-current deep inelastic scattering cross sections, $d\sigma/dQ^2$ for Q^2 between 200 and 60000 GeV^2, and $d\sigma/dx$ and $d\sigma/dy$ for Q^2 > 200 GeV^2, have been measured with the ZEUS detector at HERA. A data sample of 47.7 pb^-1, collected at a center-of-mass energy of 300 GeV, has been used. The cross section $d\sigma/dQ^2$ falls by a factor of about 50000 as Q^2 increases from 280 to 30000 GeV^2. The double differential cross section $d^2\sigma/dxdQ^2$ has also been measured. A comparison between the data and Standard Model (SM) predictions shows that contributions from antiquarks ($\bar{u}$ and $\bar{c}$) and quarks (d and s) are both required by the data. The predictions of the SM give a good description of the full body of the data presented here. A comparison of the charged-current cross section $d\sigma/dQ^2$ with the recent ZEUS results for neutral-current scattering shows that the weak and electromagnetic forces have similar strengths for Q^2 above $M^2_W, M^2_Z$. A fit to the data for $d\sigma/dQ^2$ with the Fermi constant $G_F$ and $M_W$ as free parameters yields $G_F = (1.171 \pm 0.034 (stat.) ^{+0.026}_{-0.032} (syst.) ^{+0.016}_{-0.015} (PDF)) \times 10^{-5} GeV^{-2}$ and $M_W = 80.8 ^{+4.9}_{-4.5} (stat.) ^{+5.0}_{-4.3} (syst.) ^{+1.4}_{-1.3} (PDF) GeV$. Results for $M_W$, where the propagator effect alone or the SM constraint between $G_F$ and $M_W$ have been considered, are also presented.
The differential cross section DSIG/DQ**2.
The differential cross section DSIG/DX.
The differential cross section DSIG/DY.
High transverse momentum pi0-mesons have been measured with the H1 detector at HERA in deep-inelastic ep scattering events at low Bjorken-x, down to x <~ 4.10^{-5}. The measurement is performed in a region of small angles with respect to the proton remnant in the laboratory frame of reference, namely the forward region, and corresponds to central rapidity in the centre of mass system of the virtual photon and proton. This region is expected to be particularly sensitive to QCD effects in hadronic final states. Differential cross-sections for inclusive pi0-meson production are presented as a function of Bjorken-x and the four-momentum transfer Q^2, and as a function of transverse momentum and pseudorapidity. A recent numerical BFKL calculation and predictions from QCD models based on DGLAP parton evolution are compared with the data.
Axis error includes +- 5/5 contribution (Trigger efficiency).
Axis error includes +- 5/5 contribution (Trigger efficiency).
Axis error includes +- 5/5 contribution (Trigger efficiency).