Measurements of dijet azimuthal decorrelations in pp collisions at sqrt(s) = 7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 inverse picobarns. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.
Normalized Delta_Phi distributions for events with a maximum jet pT between 80 and 110 GeV.
Normalized Delta_Phi distributions for events with a maximum jet pT between 110 and 140 GeV.
Normalized Delta_Phi distributions for events with a maximum jet pT between 140 and 200 GeV.
We report a measurement of the rate of prompt diphoton production in $p\bar{p}$ collisions at $\sqrt{s}=1.96 ~\hbox{TeV}$ using a data sample of 207 pb$^{-1}$ collected with the upgraded Collider Detector at Fermilab (CDF II). The background from non-prompt sources is determined using a statistical method based on differences in the electromagnetic showers. The cross section is measured as a function of the diphoton mass, the transverse momentum of the diphoton system, and the azimuthal angle between the two photons and is found to be consistent with perturbative QCD predictions.
Cross section as a function of the diphoton mass.
Cross section as a function of the diphoton transverse momentum.
Cross section as a function of the diphoton azimuthal angle difference.