abstract only
No description provided.
No description provided.
No description provided.
Elastic K+p scattering at a beam momentum of 4.27 GeV/c is studied and compared with elastic K−p scattering in order to extract the imaginary part of the non-Pomeranchukon-exchange amplitude. The single-pion-production cross sections are presented as well as production cross sections and resonance parameters for the Δ(1236), the K*+(890), and the K*+(1420). Production and decay distributions for the Δ++(1236) and the K*+(890) are presented and compared with the absorptive particle-exchange model and with Regge-pole-exchange models.
No description provided.
BREIT-WIGNERS PLUS PHASE SPACE TO DETERMINE RESONANCE PRODUCTION CROSS SECTIONS.
No description provided.
Neutral D ∗ meson production in e + e − annihilation at √ s =29 GeV has been studied using the high resolution spectrometer. The decay of D ∗0 into D 0 γ, where the D 0 decays into K −π + , has been observed. The production cross section in units of the point cross section is 0.63±0.22 for fractional energy Z ⩾0.5. The fragmentation function is compared with that of the D ∗+ meson measured in the same experiment.
No description provided.
Assuming additionaly BR(D0-->K PI) of 0.56 +- 0.005.
Corresponding R value.
The cross sections for K+p interactions at a center-of-mass energy of 3 GeV (4.3 GeV/c incident momentum) have been determined for the K+pπ+π−, K0pπ+π0, and K0π+π+n final states. The shape of the differential cross section dσdt′ for the quasi-two-body final state K*0(890)+Δ++(1236) is not a single exponential. Characteristics of the low-mass Kππ and pππ enhancements are discussed.
No description provided.
DECAY MOMENTS OF THE K*0 AND DEL++.
We have examined the inclusive production of nonstrange particle resonances in νp interactions using the Fermilab 15-ft bubble chamber. A sample of 2437 charged-current events with visible longitudinal momentum greater than 10 GeV/c was obtained. The ρ0 and Δ++(1232) are seen. An overall rate of 0.21±0.04 ρ0 per event is found. For five-prong events, the rate is 0.44±0.08 ρ0 per event. The ρ0Z distribution falls rapidly for Z greater than 0.4. The production of Δ++ is seen clearly in events with an identified proton. No evidence is seen for Δ0 production. An upper limit of 0.34 is placed on the ratio of ηπ0 (90% confidence level).
NO CLEAR DEL0 SIGNAL.
Inclusive production of (D0, D¯0) and D± mesons have been observed in e+e− annihilation at 29 GeV. The signals correspond to R values of R(D0+D¯0)=3.25±1.2 and R(D++D−)=1.35±0.6. D*± production is also observed via the process D*+→D0π+ and its charge conjugate. The D and D* production rates are compared.
EXTRAPOLATION TO ALL Z.
EXTRAPOLATION TO ALL Z.
EXTRAPOLATION TO ALL Z.
The results of a study of strange particle production in charged current $\bar{\nu}_{\mu} N$ interactions in the Fermilab 15 ft bubble chamber filled with a heavy $Ne-H_2$ mixture are presented. Production rates and average multiplicities of $K^0$'s and Λ's as functions of W 2 and Q 2 are given. The experimental data agree well with the quark-parton model predictions if a yield of 0.06 ± 0.02 of $K^0$'s and Λ's from charm production is included. Upper limits for D-meson production are given and the shape of the charmed quark fragmentation function is discussed. Inclusive production of the K ∗ (890) and Σ(1385) resonances is measured and it is shown that only about 5% of the K 0 mesons and Λ hyperons results from resonance decays. Relative production rates of neutral strange particles on proton and neutron targets are studied.
No description provided.
No description provided.
No description provided.
The electroweak production asymmetry and the decay fragmentation function for e + e − → c c have been measured at s = 29 GeV using charged D ∗ production over the full kinematic range. The data were taken at PEP using the High Resolution Spectrometer. The measured asymmetry is −0.12 ± 0.08. The total production cross section in units of the point cross section corrected for initial state radiation is R D ∗ = 2.7 ± 0.9 .
ASSUMES SIG(D*+) = SIG(D*0). (EXPT. MEASURES D*+ PRODUCTION ONLY). R VALUE CORRECTED FOR INITIAL STATE RADIATION.
No description provided.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
The production of neutral K ∗ (890) and ρ 0 mesons was studied in e + e − annihilation at s =29 GeV using the High Resolution Spectrometer at PEP. Differential cross sections are presented as a function of the scaled energy variable z and compared to π 0 and K 0 production. The measured multiplicities are 0.84±0.08 ϱ 0 mesons and 0.57±0.09 K ∗0 (890) mesons per event for a meson momentum greater than 725 MeV/ c . The ratios of vector meson to pseudoscalar meson production for (u,d), s and c quark are compared to predictions of the Lund model.
Data requested from authors.
No description provided.