We present the measurement of the first to fourth order moments of the four-momentum transfer squared, $q^2$, of inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ decays using the full Belle data set of 711 $\mathrm{fb}^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance where $\ell = e, \mu$. The determination of these moments and their systematic uncertainties open new pathways to determine the absolute value of the CKM matrix element $V_{cb}$ using a reduced set of matrix elements of the heavy quark expansion. In order to identify and reconstruct the $X_c$ system, we reconstruct one of the two $B$-mesons using machine learning techniques in fully hadronic decay modes. The moments are measured with progressively increasing threshold selections on $q^2$ starting with a lower value of 3.0 $\mathrm{GeV}^2$ in steps of 0.5 $\mathrm{GeV}^2$ up to a value of 10.0 $\mathrm{GeV}^2$. The measured moments are further unfolded, correcting for reconstruction and selection effects as well as QED final state radiation. We report the moments separately for electron and muon final states and observe no lepton flavor universality violating effects.
The first measurements of differential branching fractions of inclusive semileptonic ${B \to X_u \, \ell^+\, \nu_{\ell}}$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance and for $\ell = e, \mu$. Differential branching fractions are reported as a function of the lepton momentum, the four-momentum-transfer squared, light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting the backgrounds from semileptonic ${B \to X_c \, \ell^+\, \nu_{\ell}}$ decays and other processes, and corrected for resolution and acceptance effects. The measured distributions are compared to predictions from inclusive and hybrid ${B \to X_u \, \ell^+\, \nu_{\ell}}$ calculations.
This article describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B^0\to D^{*-}\ell^+\nu_\ell$ using 711 fb$^{-1}$ of Belle data collected near the $\Upsilon(4S)$ resonance. We simultaneously measure the product of the form factor normalization $\mathcal{F}(1)$ and the matrix element $|V_{cb}|$ as well as the three parameters $\rho^2$, $R_1(1)$ and $R_2(1)$, which determine the form factors of this decay in the framework of the Heavy Quark Effective Theory. The results, based on about 120,000 reconstructed $B^0\to D^{*-}\ell^+\nu_\ell$ decays, are $\rho^2=1.214\pm 0.034\pm 0.009$, $R_1(1)=1.401\pm 0.034\pm 0.018$, $R_2(1)=0.864\pm 0.024\pm 0.008$ and $\mathcal{F}(1)|V_{cb}|=(34.6\pm 0.2\pm 1.0)\times 10^{-3}$. The branching fraction of $B^0\to D^{*-}\ell^+\nu_\ell$ is measured at the same time/ we obtain a value of $\mathcal{B}(B^0 \to D^{*-}\ell^+ \nu_\ell) = (4.58 \pm 0.03 \pm 0.26) %$. The errors correspond to the statistical and systematic uncertainties. These results give the most precise determination of the form factor parameters and $\mathcal{F}(1)|V_{cb}|$ to date. In addition, a direct, model-independent determination of the form factor shapes has been carried out.
We report a high-statistics measurement of the differential cross section of the process gamma gamma --> K^0_S K^0_S in the range 1.05 GeV <= W <= 4.00 GeV, where W is the center-of-mass energy of the colliding photons, using 972 fb^{-1} of data collected with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider operated at and near the Upsilon-resonance region. The differential cross section is fitted by parameterized S-, D_0-, D_2-, G_0- and G_2-wave amplitudes. In the D_2 wave, the f_2(1270), a_2(1320) and f_2'(1525) are dominant and a resonance, the f_2(2200), is also present. The f_0(1710) and possibly the f_0(2500) are seen in the S wave. The mass, total width and product of the two-photon partial decay width and decay branching fraction to the K bar{K} state Gamma_{gamma gamma}B(K bar{K}) are extracted for the f_2'(1525), f_0(1710), f_2(2200) and f_0(2500). The destructive interference between the f_2(1270) and a_2(1320) is confirmed by measuring their relative phase. The parameters of the charmonium states chi_{c0} and chi_{c2} are updated. Possible contributions from the chi_{c0}(2P) and chi_{c2}(2P) states are discussed. A new upper limit for the branching fraction of the P- and CP-violating decay channel eta_c --> K^0_S K^0_S is reported. The detailed behavior of the cross section is updated and compared with QCD-based calculations.
The W dependence of the cross section after integrating up to |cosTheta*|<0.8 and 0.6.
The cos(Theta*) dependence of the differential cross section for the W ranges 1.10-1.11, 1.11-1.12 and 1.12-1.13.
The cos(Theta*) dependence of the differential cross section for the W ranges 1.13-1.14, 1.14-1.15 and 1.15-1.16.
Measurements of inclusive differential cross sections for charged pion and kaon production in electron-positron annihilation have been carried out at a center-of-mass energy of Q = 10.52 GeV. The measurements were performed with the Belle detector at the KEKB electron-positron collider using a data sample containing 113 million e+e- -> qqbar events, where q={u,d,s,c}. We present charge-integrated differential cross sections d\sigma_h+-/dz for h+- = pi+-, K+- as a function of the relative hadron energy z = 2*E_h / sqrt{s} from 0.2 to 0.98. The combined statistical and systematic uncertainties for pi+- (K+-) are 4% (4%) at z ~ 0.6 and 15% (24%) at z ~ 0.9. The cross sections are the first measurements of the z-dependence of pion and kaon production for z > 0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z^0 resonance used by the experiments at LEP and SLC.
Measured charged-integrated differential cross sections for charged pion and kaon production as a function of the fractional hadron energy Z (=2*Eh/sqrt(s)).
We report measurements of the exclusive cross section for $e^+e^- \to D \overline D $, where $D=D^0$ or $D^+$, in the center-of-mass energy range from the $D \overline D $ threshold to $5\mathrm{GeV}/c^2$ with initial-state radiation. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of $673$ $\mathrm{fb}^{-1}$.
Cross section of E+ E- --> D0 DBAR0.
Cross section of E+ E- --> D+ D-.
The cross section for e^+e^- to pi^+pi^-J/psi between 3.8 and 5.5 GeV/c^2 is measured using a 548 fb^{-1} data sample collected on or near the Upsilon(4S) resonance with the Belle detector at KEKB. A peak near 4.25 GeV/c^2, corresponding to the so called Y(4260), is observed. In addition, there is another cluster of events at around 4.05 GeV/c^2. A fit using two interfering Breit-Wigner shapes describes the data better than one that uses only the Y(4260), especially for the lower mass side of the 4.25 GeV enhancement.
$K^0_SK^0_S$ production in two-photon collisions has been studied using a 397.6 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+e^-$ collider. For the first time the cross sections are measured in the two-photon center-of-mass energy range between 2.4 GeV and 4.0 GeV and angular range $|\cos\theta^*|<0.6$. Combining the results with measurements of $\gamma\gamma\to K^+K^-$ from Belle, we observe that the cross section ratio $\sigma(K^0_SK^0_S)/\sigma(K^+K^-)$ decreases from ~0.13 to ~0.01 with increasing energy. Signals for the $\chi_{c0}$ and $\chi_{c2}$ charmonium states are also observed.
Total cross section for the process GAMMA GAMMA --> K0S K0S.
Angular distribution of the cross section in the W range 2.4 to 2.5 GeV.
Angular distribution of the cross section in the W range 2.5 to 2.6 GeV.
We present a measurement of angular observables, $P_4'$, $P_5'$, $P_6'$, $P_8'$, in the decay $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$, where $\ell^+\ell^-$ is either $e^+e^-$ or $\mu^+\mu^-$. The analysis is performed on a data sample corresponding to an integrated luminosity of $711~\mathrm{fb}^{-1}$ containing $772\times 10^{6}$ $B\bar B$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the asymmetric-energy $e^+e^-$ collider KEKB. Four angular observables, $P_{4,5,6,8}'$ are extracted in five bins of the invariant mass squared of the lepton system, $q^2$. We compare our results for $P_{4,5,6,8}'$ with Standard Model predictions including the $q^2$ region in which the LHCb collaboration reported the so-called $P_5'$ anomaly.
Results of the angular analysis of $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$ (where $\ell = e,\mu$) in five bins of $q^2$, the di-lepton invariant mass squared.
We report the first measurement of the differential cross section for the process gamma gamma --> eta eta in the kinematic range above the eta eta threshold, 1.096 GeV < W < 3.8 GeV over nearly the entire solid angle range, |cos theta*| <= 0.9 or <= 1.0 depending on W, where W and theta* are the energy and eta scattering angle, respectively, in the gamma gamma center-of-mass system. The results are based on a 393 fb^{-1} data sample collected with the Belle detector at the KEKB e^+ e^- collider. In the W range 1.1-2.0 GeV/c^2 we perform an analysis of resonance amplitudes for various partial waves, and at higher energy we compare the energy and the angular dependences of the cross section with predictions of theoretical models and extract contributions of the chi_{cJ} charmonia.
Total cross section.
Angular dependence of the differential cross section for the W range 1.096 to 1.120 GeV.
Angular dependence of the differential cross section for the W range 1.120 to 1.160 GeV.