Cross section and complete set of proton spin observables in p polarized d elastic scattering at 250 MeV

Hatanaka, K. ; Shimizu, Y. ; Hirooka, D. ; et al.
Phys.Rev.C 66 (2002) 044002, 2002.
Inspire Record 599502 DOI 10.17182/hepdata.25292

The angular distributions of the cross section, the proton analyzing power, and all proton polarization transfer coefficients of p→d elastic scattering were measured at 250 MeV. The range of center-of-mass angles was 10°–165° for the cross section and the analyzing power, and about 10°–95° for the polarization transfer coefficients. These are the first measurements of a complete set of proton polarization observables for p→d elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely, the Tucson-Melbourne (TM) 2π-exchange model, a modification thereof (TM′) closer to chiral symmetry, and the Urbana IX model. Large effects of the three-nucleon forces are predicted. The inclusion of the three-nucleon forces gives a good description of the cross section at angles below the minimum. However, appreciable discrepancies between the data and predictions remain at backward angles. For the spin observables the predictions of the TM 3NF model deviate strongly from the other two 3NF models, which are close together, except for Kyy′. In the case of the analyzing power all 3NF models fail to describe the data at the upper half of the angular range. In the restricted measured angular range the polarization transfer coefficients are fairly well described by the TM′ and Urbana IX 3NF models, whereas the TM 3NF model mostly fails. The transfer coefficient Kyy′ is best described by the Urbana IX but the theoretical description is still insufficient to reproduce the experimental data. These results call for a better understanding of the spin structure of the three-nucleon force and very likely for a full relativistic treatment of the three-nucleon continuum.

2 data tables match query

Cross section and analyzing power measurements.

Proton polarization transfer coefficients.


Complete set of precise deuteron analyzing powers at intermediate energies: Comparison with modern nuclear force predictions

Sekiguchi, K. ; Sakai, H. ; Witaa, H. ; et al.
Phys.Rev.C 65 (2002) 034003, 2002.
Inspire Record 583095 DOI 10.17182/hepdata.25427

Precise measurements of deuteron vector and tensor analyzing powers Ayd, Axx, Ayy, and Axz in d−p elastic scattering were performed via 1H(d→,d)p and 1H(d→,p)d reactions at three incoming deuteron energies of Edlab=140, 200, and 270 MeV. A wide range of center-of-mass angles from ≈10° to 180° was covered. The cross section was measured at 140 and 270 MeV at the same angles. These high precision data were compared with theoretical predictions based on exact solutions of three-nucleon Faddeev equations and modern nucleon-nucleon potentials combined with three-nucleon forces. Three-body interactions representing a wide range of present day models have been used: the Tucson-Melbourne 2π-exchange model, a modification thereof closer to chiral symmetry, the Urbana IX model, and a phenomenological spin-orbit ansatz. Large three-nucleon force effects are predicted, especially at the two higher energies. However, only some of them, predominantly dσ/dΩ and Ayd, are supported by the present data. For tensor analyzing powers the predicted effects are in drastic conflict to the data, indicating defects of the present day three-nucleon force models.

8 data tables match query

Angular distribution for DEUT P elastic scattering at EKIN of 140 MeV with the SMART spectrograph.

Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the D-room polarimeter.

Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the SMART spectrograph.

More…

Differential cross section and analyzing power measurements for polarized n(d) elastic scattering at 248-MeV

Maeda, Y. ; Sakai, H. ; Fujita, K. ; et al.
Phys.Rev.C 76 (2007) 014004, 2007.
Inspire Record 756614 DOI 10.17182/hepdata.25172

The differential cross sections and vector analyzing powers for nd elastic scattering at En=248 MeV were measured for 10°–180° in the center-of-mass (c.m.) system. To cover the wide angular range, the experiments were performed separately by using two different setups for forward and backward angles. The data are compared with theoretical results based on Faddeev calculations with realistic nucleon-nucleon (NN) forces such as AV18, CD Bonn, and Nijmegen I and II, and their combinations with the three-nucleon forces (3NFs), such as Tucson-Melbourne 99 (TM99), Urbana IX, and the coupled-channel potential with Δ-isobar excitation. Large discrepancies are found between the experimental cross sections and theory with only 2N forces for θc.m.>90°. The inclusion of 3NFs brings the theoretical cross sections closer to the data but only partially explains this discrepancy. For the analyzing power, no significant improvement is found when 3NFs are included. Relativistic corrections are shown to be small for both the cross sections and the analyzing powers at this energy. For the cross sections, these effects are mostly seen in the very backward angles. Compared with the pd cross section data, quite significant differences are observed at all scattering angles that cannot be explained only by the Coulomb interaction, which is usually significant at small angles.

6 data tables match query

Cross section for N DEUT elastic scattering for data taken in 2003 in the backward direction in the centre-of-mass. Statistical errors only are given.

Cross section for N DEUT elastic scattering for data taken in 2000 in the backward direction in the centre-of-mass. Statistical errors only are given.

Cross section for N DEUT elastic scattering in the forward direction in the centre-of-mass. Statistical errors only are given.

More…

Measurements of polarization in pi- p elastic scattering at large angles

Hill, D. ; Koehler, P.F.M. ; Novey, T.B. ; et al.
Phys.Rev.Lett. 27 (1971) 1241-1243, 1971.
Inspire Record 68894 DOI 10.17182/hepdata.229

We have made measurements of polarization in π−p elastic scattering, with emphasis over the backward region, at 1.60 to 2.28 GeVc. The results indicate the absence of u-channel dominance in the backward region, as was observed in the case of π+p scattering. Comparisons have been made with predictions of various phase-shift analyses which show that the agreement is generally very poor in the backward region.

9 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the polarization parameter in pi+- p, k+- p, p p, and anti-p p elastic scattering at 6 gev/c

Borghini, M. ; Dick, L. ; Di Lella, L. ; et al.
Phys.Lett.B 31 (1970) 405-409, 1970.
Inspire Record 63191 DOI 10.17182/hepdata.6078

Experimental results are presented for the polarization parameter P 0 in π ± p , K ± p , pp, and p ̄ p elastic scattering at 6 GeV/ c , and in the range of the invariant four-momentum transfer squared − t from 0.05 to ∼ 2.0 (GeV/ c ) 2 .

2 data tables match query

'1'. '2'. '3'. '4'.

No description provided.


Measurement of the Polarization Parameter in 24-GeV/c Proton Proton Elastic Scattering at Small Momentum Transfers

Crabb, D.G. ; Green, K. ; Kyberd, P. ; et al.
Nucl.Phys.B 121 (1977) 231-236, 1977.
Inspire Record 124254 DOI 10.17182/hepdata.35517

A measurement of the polarization parameter P 0 in pp elastic scattering has been made at 24 GeV/ c over the range | t | = 0.1 to 0.9 (GeV/ c ) 2 , positive, falling to zero around | t | = 0.8 (GeV/ c ) 2 . For the range 0.1 ⪕ |t| ⪕ 0.4 GeV /c) 2 , P 0 is constant at about 0.03.

1 data table match query

Axis error includes +- 5/5 contribution (SYS-ERR DUE MAINLY TO UNCERTAINTY IN KNOWLEDGE OF ABSOLUTE VALUE OF TARGET POLARIZATION).


A Measurement of the Polarization Parameter in Large Angle Proton Proton Elastic Scattering at 7.9-GeV/c

Aschman, D.G. ; Crabb, D.G. ; Green, K. ; et al.
Nucl.Phys.B 125 (1977) 349-368, 1977.
Inspire Record 125075 DOI 10.17182/hepdata.35322

The polarization parameter in proton-proton elastic scattering has been measured at an incident momentum of 7.9 GeV/ c and four-momentum transfers in the range 0.9 < | t | < 6.5 (GeV/ c ) 2 using a high intensity unpolarized proton beam incident on a polarized proton target. The angle and momentum of the forward scattered protons were measured with a magnet spectrometer and scintillation counter hodoscopes and the angle of the recoil proton was measured using similar hodoscopes. A clean separation between the elastic scattering from free hydrogen and that coming from inelastic interactions and from interactions with complex nuclei in the target was obtained. The polarization shows substantial structure rising from zero at | t | = 1.0 (GeV/ c ) 2 to a maximum at | t | = 1.7 (GeV/ c ) 2 and then falling to zero at | t | = 2.0 (GeV/ c ) 2 . There is evidence of a further peak at | t | = 2.8 (GeV/ c ) 2 . Above | t | = 3.25 (GeV/ c ) 2 the polarization is small and consistent with zero. A comparison of these data with data obtained at other beam momenta shows that the polarization parameter has a strong momentum dependence.

1 data table match query

No description provided.


Measurement of the Polarization in Backward Angle pi- p Elastic Scattering at 2.93-GeV/c and 3.25-GeV/c

Auer, P. ; Bridges, D. ; Droege, T. ; et al.
Nucl.Phys.B 113 (1976) 279-284, 1976.
Inspire Record 3320 DOI 10.17182/hepdata.35605

Polarization in π − p elastic scattering, with emphasis over the backward region, has been measured at 2.93 and 3.25 GeV/ c . We observe large changes in polarization compared with existing data above and below these energies. Our data may be useful in determining the properties of resonances and in understanding baryon exchanges.

1 data table match query

THESE DATA, TOGETHER WITH THE FORWARD SCATTERING POLARIZATION MEASUREMENTS, ARE TABULATED IN THE RECORD OF P. AUER ET AL., PRL 37, 83 (1976).


Analyzing Power Measurements of Coulomb Nuclear Interference With the Polarized Proton and Anti-proton Beams at 185 GeV/c

The E581/704 collaboration Akchurin, N. ; Carey, David C. ; Coleman, R. ; et al.
Phys.Lett.B 229 (1989) 299-303, 1989.
Inspire Record 280476 DOI 10.17182/hepdata.29782

The analyzing power A N of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon, scattering in the Coulomb-nuclear interference region has been measured using thhe 185 GeV/ c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties.

3 data tables match query

No description provided.

Data from hydrocarbon target.

Data from hydrocarbon target.


MEASUREMENT OF THE POLARIZATION FOR THE REACTIONS K+ N ---> K+ N AND K0 P AT 1.06-GEV/C, 1.28-GEV/C, 1.39-GEV/C AND 1.49-GEV/C

Nakajima, K. ; Isagawa, S. ; Ishimoto, S. ; et al.
Phys.Lett.B 112 (1982) 75-79, 1982.
Inspire Record 179758 DOI 10.17182/hepdata.30955

The polarization for the K + n elastic and charge-exchange reactions was measured at the momenta of 1.06, 1.28, 1.39 and 1.49 GeV/ c . It was found to be negative for the K + n elastic process and generally positive for the charge-exchange process. The present results are compared with the predictions of phase shift analyses.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…