A study of π − + p →η + n near threshold shows that the cross section rises linearly with η momentum and that Λ η < 0.9 MeV c 2 (95% confidence limit).
Errors are statistical only.
We have investigated the photoproduction process γ+p→π++n over a wide range of energies and u values at the Stanford Linear Accelerator Center (SLAC) accelerator. We also have investigated γ+p→π−+N*++ at one value of u and γ+p→K++Λ0, Σ0 at one u value and three energies. Our results for dσdu for the photoproduction of π+ mesons from hydrogen are roughly α2π of the corresponding cross sections for the elastic scattering of π− mesons from hydrogen. The u dependence of our cross sections is not dominated by nucleon exchange as it is in the case of π+p elastic scattering.
No description provided.
No description provided.
No description provided.
The v and v nucleon total cross-sections have been determined as a function of energy using a sample of 2500 v and 950 v event. The results are compared with predictions of scaling and charge symmetry hypotheses.
Measured charged current total cross section.
Measured charged current total cross section.
In a study of the missing-mass spectrum near 1 GeV in the reaction π−+p→MM+n at three incident momenta near 2 GeV, we find no evidence for the recently reported narrow neutral mesons at 940, 963, and 1033 MeV.
No description provided.
We report observation of the S* meson in the reaction π−+p→S*+n. The S* decays into ππ and KK and is seen most clearly in the 2π0 channel. A fit to the data gives a sheet-II pole at 987±7−i(24±7) MeV and a relative coupling gS→KKgS→ππ of 3.8 ± 1.0.
AT AROUND K+ K- THRESHOLD.
A novel form of mass spectrometer has been used to measure the masses, widths, and cross sections of the η, ω, X0(958), and φ mesons near their respective thresholds in the reaction π−+p→missingmass+n. The incident momentum is varied in small steps through the threshold while neutrons of a given momentum are detected near zero degrees. The lower limit of the c.m. momentum P* at which measurements have been made ranges from about 50 MeV/c at the φ to about 30 MeV/c at the η. A somewhat low value for the ω mass, 782.3 ± 0.6 MeV, is found. The width of the X0 is < 1.9 MeV (95% confidence level). All four mesons show evidence of S-wave production, with values of σP* of 21.2 ± 1.8, 0.35 ± 0.03, and 0.29 ± 0.06 μb/(MeV/c) for the η, X0, and φ, respectively. A rapid rise in the ω cross section appears to be modified by a final-state interaction. The effect of this rise can probably be seen in some S11 pion-nucleon phase-shift solutions. Evidence is also presented of a sudden drop in the π+π− mass spectrum just above the threshold for the production of a K+K− pair. The paper includes a comprehensive discussion of the method and of the details of the spectrometer.
CROSS SECTIONS NEAR THRESHOLD.
Measurements are reported of the differential cross section for the reaction π−p→π−p,π0n,andηn at three angles close to 180° and for incident momenta in the range 0.6 to 1.0 GeV/c. The three measurements were made simultaneously at 1% intervals of beam momentum. The data on elastic scattering resolve a discrepancy between two earlier experiments. They also show clearly the effect of the opening of the ηn channel. The charge-exchange data show that I-spin bounds are not violated in the kinematic region covered. The ηn data can be adequately described with known s-channel resonances. No evidence for narrow N*'s is seen in any channel.
No description provided.
No description provided.
We have investigated ω production in the reaction π−p→ωn very close to threshold. The dependence of the mass, width, branching ratio, and cross section upon the final-state c.m. momentum, P*, were studied. The mass and width were independent of P* with values of 782.4 ± 0.5 and 10.22 ± 0.43 MeV, respectively. The branching ratio Γ(ω→π0γ)Γ(ω→π+π−π0) was also constant, having a value of 0.084 ± 0.013. An upper limit of 0.18 was set on the branching ratio Γ(ω→π0π0γ)Γ(ω→π0γ). We observed a rapid fall in the cross section below P*=100 MeV/c. This could not be explained in terms of S-wave production alone, but could be fitted by a resonant P wave plus a noninterfering S wave.
CROSS SECTION DEPENDENCE ON FINAL STATE CENTRE OF MASS MOMENTUM. TABULATED VALUES TAKEN FROM TABLE 1 OF H. KARAMI ET AL., NP B154, 503 (1979).
We present results for the differential cross sections of neutrinos and antineutrinos on nucleons in the energy range E = 2−200 GeV, from the BEBC and Gargamelle experiments. The structure functions F 2 , 2 χF 1 and χF 3 have been evaluated as a function of χ and q 2 . Deviations are observed from Bjorken scaling, which are very similar to those found in electron and muon inelastic scattering. For the Callan-Gross ratio, we find 2χF 1 F 2 = 0.80 ± 0.12 and the corresponding value for 〈R〉 = 〈 σ S σ T 〉 = 0.15 ± 0.10 . Our results are consistent with the Gross-Llewellyn-Smith sum rule; we measure ⩾2.5 ± 0.5 valence quarks per nucleon. Quark and antiquark distributions are given. The Nachtmann moments of F 2 and χF 3 are quantitatively consistent with the predictions from QCD. The value of the strong interaction parameter is λ = 0.74 ± 0.05 GeV without corrections, and 0.66 ± 0.05 GeV including α S 2 corrections. The moments of the gluon distribution are found to be positive and indicate an χ distribution of gluons which is comparable with that of the valence quarks.
No description provided.
No description provided.
We present results for the reactions νp→μ−π+p and νp→μ−K+p at energies above 5 GeV. The average cross section for the first reaction between 15 and 40 GeV is (0.80±0.12) × 10−38 cm2 and for events with Mπ+p<1.4 GeV is (0.55±0.08) × 10−38 cm2. The ratio of the cross section for the second reaction to that for the first is 0.017±0.010.
No description provided.
No description provided.
RAPIDITY IS MEASURED IN 'QUARK' REST FRAME DEFINED AS Y(Q)=Y(LAB)-LOG(W**2/M**2) WHERE Y(LAB)=0.5*LOG((E+PL)/(E-PL)).