Small angle elastic scattering events have been observed at the CERN Intersecting Storage Rings. Directions of both particles as well as the collision vertex are reconstructed with the help of four sets of spark chambers, two for each of the two arms. The elastic nature of the events is demonstrated by a collinearity requirement. We find values for the (diffraction) slope parameter in disagreement with the simple linear extrapolation of lower energy (Surpukov) data.
NUMBER OF EVENTS 87364.
NUMBER OF EVENTS 8305.
No description provided.
The differential cross sections at 180° for the reactions γ+p→π++n and γ+n→π−+p were measured using a magnetic spectrometer to detect π± mesons. In order to reduce the spread of energy resolution due to the nucleon motion inside the deuteron, a photon difference method was employed with a 50-MeV step for the reaction γ+n→π−+p. The data show structures at the second- and the third-resonance regions for both reactions. A simple phenomenological analysis was made for fitting the data, and the results are compared with those of previous analyses.
No description provided.
No description provided.
We report measured values of the asymmetry in the elastic scattering of K+ mesons from polarized protons. The data were obtained at fourteen incident K+ momenta from 1.33 to 2.58 GeVc; the approximate angular range covered was −0.85<cosθKc.m.<0.9. We compare our results with other available measurements and note several significant differences.
No description provided.
No description provided.
No description provided.
Elastic electron-proton scattering cross sections were measured at backward angles (80°-90°) in the laboratory for four-momentum transfers between 7 F−2 and 45 F−2. Experimental errors range from 3.1% to 5.3%, including a systematic error estimated to be 1.9% added in quadrature. Electric and magnetic form factors are computed from all the recent data in this q2 range, with allowance made for possible normalization differences. The results show a deviation from the scaling law.
No description provided.
No description provided.
No description provided.
Measurements of polarization in π+p elastic scattering have been made at 1.60, 1.80, 2.11, and 2.31 GeVc. The data cover the entire angular range, with emphasis on the backward region. Comparisons have been made with both u-channel and t-channel models, as well as with predictions of phase-shift analyses. While the agreement is generally poor in all cases, the best agreement is with some t-channel predictions.
No description provided.
No description provided.
No description provided.
Results of a measurement of the π−p charge-exchange process at backward angles are presented. Differential cross sections were measured in the angular region −0.5<cosθ*<−1.0 at incident momenta of 2, 3, 4, 5, and 6 GeV/c. An additional background subtraction to a version of the data published previously has a significant effect at 6 GeV/c and brings the data into agreement with more recent measurements. The 6-GeV/c data were combined with existing measurements of the differential cross sections for backward π+p and π−p elastic scattering to yield values for the isotopic-spin-½ and −32 u-channel and s-channel amplitudes for backward pion-nucleon scattering and for the magnitude of the phases between them. It is found that the u-channel amplitudes can be explained by pure Regge-pole (Δδ, Nα) exchange only near the extreme backward direction, but that a Reggeized absorption model agrees at least qualitatively with the data. The phase difference between the I=12 and 32 s-channel amplitudes is approximately 90° over the region −0.8<u<0 (GeV/c)2.
No description provided.
No description provided.
No description provided.
Neutron-proton and neutron-deuteron total cross sections have been measured directly at the Princeton-Pennsylvania Accelerator using time of flight to determine the incident neutron momentum. The results cover the region from 700 to 2900 MeVc with a typical accuracy of 0.8% for each of 26 momentum bins. The data are not consistent with the most precise previous measurements in the same momentum range.
No description provided.
In the reaction p p → 3π + 3π − 2227 events, and in the reaction p p → 3π + 3π − π 0 6578 events have been analyzed. The general characteristics of the reactions, such as total cross sections, angular and momentum distributions, the production of ϱ, f, ω and η mesons, and angular correlations are presented.
No description provided.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
Differential cross sections for the reactions e−+p→e−+p+π0 and e−+p→e−+n+π+ have been measured near the Δ(1236) resonance at four-momentum transfers of 0.05, 0.13, 0.25, and 0.4 (GeV/c)2. A few measurements of the π+ angular distribution have been obtained at a four-momentum transfer of 0.6 (GeV/c)2. Cross sections for the π0 reaction are compared with dispersion-theory predictions at several pion-nucleon c.m. energies for each four-momentum transfer. A phenomenological analysis of the π0 results leads to the determination of the magnetic dipole and electric quadrupole partial-wave amplitudes and the γNΔ transition form factor. Evidence is found for the existence of a significant scaler-transverse interference term in the cross section, which is tentatively associated with the resonant scaler quadrupole interaction. Cross sections for π+ electroproduction are compared with dispersion theories using the pion form factor as a free parameter. The results suggest a form factor similar to that of the proton. A fit to the form-factor results, using the ρ-dominance model, requires mρ=560±80 MeV. The rms pion charge radius is estimated to be 〈r2〉12=0.86±0.14 F.
No description provided.
No description provided.
No description provided.
Compton scattering on protons has been measured at a mean photon energy of 6 GeV and four-momentum transfers − t between 0.06 and 0.60 (GeV/ c ) 2 . The differential cross section shows a diffraction-like behaviour. The cross section extrapolated to t =0 is in fair agreement with the optical point. Discrepancies with the vector meson dominance model are pointed out.
No description provided.