We present the results of a search for the charged-lepton-flavor violating decays $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$, where $\ell^{\mp}$ is either an electron or a muon. The results are based on 365 fb$^{-1}$ and 711 fb$^{-1}$ datasets collected with the Belle II and Belle detectors, respectively. We use an exclusive hadronic $B$-tagging technique, and search for a signal decay in the system recoiling against a fully reconstructed $B$ meson. We find no evidence for $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$ decays and set upper limits on the branching fractions in the range of $(2.9-6.4)\times10^{-5}$ at 90% confidence level.
$M_{\tau}$ distribution in signal region, (OS$e$, Belle)
$M_{\tau}$ distribution in signal region, (OS$e$, Belle II)
$M_{\tau}$ distribution in signal region, (OS$\mu$, Belle)
This paper presents a study of the inclusive forward J/$\psi$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} = 13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative J/$\psi$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|\eta| < 1$. The J/$\psi$ mesons are reconstructed via their decay into $\mu^+ \mu^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range $-3.7 < \eta < -1.7$, which overlaps with the J/$\psi$ rapidity region. The results show a steeper-than-linear increase of the J/$\psi$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.
Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.
A measurement of the WZ$γ$ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis focuses on the final state with three charged leptons, $\ell^\pmν\ell^+\ell^-$, where $\ell$ = e or $μ$, accompanied by an additional photon. The observed (expected) significance of the WZ$γ$ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region, where events with an $\ell$ originating from a tau lepton decay are excluded, to be 5.48 $\pm$ 1.11 fb, which is compatible with the prediction of 3.69 $\pm$ 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axion-like particles.
The distributions of the variables used in the simultaneous fit for the nonprompt $l$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The distributions of the variables used in the simultaneous fit for the nonprompt $\gamma$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The distributions of the variables used in the simultaneous fit for the ZZ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
We present an inclusive search for anomalous production of single-photon events from neutrino interactions in the MicroBooNE experiment. The search and its signal definition are motivated by the previous observation of a low-energy excess of electromagnetic shower events from the MiniBooNE experiment. We use the Wire-Cell reconstruction framework to select a sample of inclusive single-photon final-state interactions with a final efficiency and purity of 7.0% and 40.2%, respectively. We leverage simultaneous measurements of sidebands of charged current $\nu_{\mu}$ interactions and neutral current interactions producing $\pi^{0}$ mesons to constrain signal and background predictions and reduce uncertainties. We perform a blind analysis using a dataset collected from February 2016 to July 2018, corresponding to an exposure of $6.34\times10^{20}$ protons on target from the Booster Neutrino Beam (BNB) at Fermilab. In the full signal region, we observe agreement between the data and the prediction, with a goodness-of-fit $p$-value of 0.11. We then isolate a sub-sample of these events containing no visible protons, and observe $93\pm22\text{(stat.)}\pm35\text{(syst.)}$ data events above prediction, corresponding to just above $2\sigma$ local significance, concentrated at shower energies below 600 MeV.
Fig. 2. The reconstructed shower energy. The individual signal and background event type categories added together form the unconstrained prediction.
Fig. 2. The constrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.
Fig. 2, Suppl. Fig. 5. The unconstrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.
We report results from an updated search for neutral current (NC) resonant $\Delta$(1232) baryon production and subsequent $\Delta$ radiative decay (NC $\Delta\rightarrow N \gamma$). We consider events with and without final state protons; events with a proton can be compared with the kinematics of a $\Delta(1232)$ baryon decay, while events without a visible proton represent a more generic phase space. In order to maximize sensitivity to each topology, we simultaneously make use of two different reconstruction paradigms, Pandora and Wire-Cell, which have complementary strengths, and select mostly orthogonal sets of events. Considering an overall scaling of the NC $\Delta\rightarrow N \gamma$ rate as an explanation of the MiniBooNE anomaly, our data exclude this hypothesis at 94.4% CL. When we decouple the expected correlations between NC $\Delta\rightarrow N \gamma$ events with and without final state protons, and allow independent scaling of both types of events, our data exclude explanations in which excess events have associated protons, and do not exclude explanations in which excess events have no associated protons.
The four bins correspond to WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ predictions. Systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Constrained Signal Channels Covariance Matrix and Signal And Constraining Channels Covariance Matrix tabs. This corresponds to Fig. 1 and Table III of the paper.
Covariance matrix showing constrained uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Pearson data statistical uncertainties have been included, and include small correlations due to events which can be selected by both WC and Pandora. The four bins are the WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ channels. This corresponds to Fig. 1 and Table II of the paper.
Four constraining channels. The four channels in order are NC $\pi^0 Np$, NC $\pi^0 0p$, $\nu_\mu$CC $Np$, and $\nu_\mu$CC $0p$. Each channel contains 15 bins from 0 to 1500 MeV of reconstructed neutrino energy, with an additional overflow bin. Unconstrained and constrained systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Signal And Constraining Channels Covariance Matrix tab. This corresponds to Fig. 6 of the Supplemental Material.
This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This is the first measurement to use data from all five years of operation of the MicroBooNE experiment, corresponding to an exposure of $1.11\times 10^{21}$ protons on target, a $70\%$ increase on past results. Two samples of electron neutrino interactions without visible pions are used, one with visible protons and one without any visible protons. The MicroBooNE data show reasonable agreement with the nominal prediction, with $p$-values $\ge 26.7\%$ when the two $ν_e$ samples are combined, though the prediction exceeds the data in limited regions of phase space. The data is further compared to two empirical models that modify the predicted rate of electron-neutrino interactions in different variables in the simulation to match the unfolded MiniBooNE low energy excess. In the first model, this unfolding is performed as a function of electron neutrino energy, while the second model aims to match the observed shower energy and angle distributions of the MiniBooNE excess. This measurement excludes an electron-like interpretation of the MiniBooNE excess based on these models at $> 99\%$ CL$_\mathrm{s}$ in all kinematic variables.
Fig. 2 top figure - Distributions of MC simulation compared with data for reconstructed neutrino energy in the 1$e$N$p$0$\pi$ signal channel, along with the LEE Signal Model 1. Only bins between 0.15 GeV and 1.55 GeV are released, as statistical tests are performed within this region. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 2, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).
Fig. 2 bottom figure - Distributions of MC simulation compared with data for reconstructed neutrino energy in the 1$e$0$p$0$\pi$ signal channel, along with the LEE Signal Model 1. Only bins between 0.15 GeV and 1.55 GeV are released, as statistical tests are performed within this region. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 2, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).
Fig. 3 top figure - Distributions of MC simulation compared with data for reconstructed shower energy in the 1$e$N$p$0$\pi$ signal channel, along with the LEE Signal Model 2. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 3, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).
Event-by-event fluctuations of the event-wise mean transverse momentum, $\langle p_{\mathrm{T}}\rangle$, of charged particles produced in proton$-$proton (pp) collisions at $\sqrt{s}$ = 5.02 TeV, Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}} =$ 5.44 TeV, and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} =$ 5.0 TeV are studied using the ALICE detector based on the integral correlator $\langle\langle Δp_{\rm T}Δp_{\rm T}\rangle\rangle $. The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe$-$Xe and Pb$-$Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe$-$Xe and Pb$-$Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity, $S_0$, of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in pp collisions at $\sqrt{s}$ = 5.02 TeV.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Xe--Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV.
The $p_{\rm T}$-differential cross section of $\omega$ meson production in pp collisions at $\sqrt{s}= 13$ TeV at midrapidity ($|y|<0.5$) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of $1.6 <p_{\rm T}< 50$ GeV/$c$. The meson is reconstructed via the $\omega\rightarrow\pi^+\pi^-\pi^0$ decay channel. The results are compared with various theoretical calculations: PYTHIA8.2 with the Monash 2013 tune overestimates the data by up to 50%, whereas good agreement is observed with Next-to-Leading Order (NLO) calculations incorporating $\omega$ fragmentation using a broken SU(3) model. The $\omega/\pi^0$ ratio is presented and compared with theoretical calculations and the available measurements at lower collision energies. The presented data triples the $p_{\rm T}$ ranges of previously available measurements. A constant ratio of $C^{\omega/\pi^0}=0.578\pm0.006~\text{(stat.)}\pm 0.013~\text{(syst.)}$ is found above a transverse momentum of $4$ GeV/$c$, which is in agreement with previous findings at lower collision energies within the systematic and statistical uncertainties.
Invariant differential cross section of OMEGA mesons produced in inelastic pp collisions at center-of-mass energy 13 TeV, the uncertainty of sigma_{MB} of 1.58% is not included in the systematic error.
The measured ratio of cross sections for inclusive OMEGA to PI0 production at a centre-of-mass energy of 13 TeV.
The momentum-differential invariant cross sections of ${\pi^{0}}$ and $\eta$ mesons are reported for pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.8$). The measurement is performed in a broad transverse-momentum range of $0.2<p_{\rm T}<200$ GeV/$c$ and $0.4<p_{\rm T}<60$ GeV/$c$ for the ${\pi^{0}}$ and $\eta$, respectively, extending the $p_{\rm T}$ coverage of previous measurements. Transverse-mass-scaling violation of up to 60% at low transverse momentum has been observed, agreeing with measurements at lower collision energies. Transverse Bjorken $x$ ($x_{\rm T}$) scaling of the ${\pi^{0}}$ cross sections at LHC energies is fulfilled with a power-law exponent of $n$ = 5.01$\pm$0.05, consistent with values obtained for charged pions at similar collision energies. The data is compared to predictions from next-to-leading order perturbative QCD calculations, where the ${\pi^{0}}$ spectrum is best described using the CT18 parton distribution function and the NNFF1.0 or BDSS fragmentation function. Expectations from PYTHIA8 and EPOS LHC overestimate the spectrum for the ${\pi^{0}}$ and are not able to describe the shape and magnitude of the $\eta$ spectrum. The charged-particle multiplicity dependent ${\pi^{0}}$ and $\eta$ $p_{\rm T}$ spectra show the expected hardening with increasing multiplicity. This is demonstrated across a broad transverse-momentum range and up to events with a charged-particle multiplicity exceeding five times the mean value in minimum bias collisions. The absolute magnitude of the $\eta/\pi^{0}$ ratio shows a dependence on the charged-particle multiplicity for $p_{\rm T}<4$ GeV/$c$, qualitatively described by PYTHIA8 and EPOS LHC due to a rising contribution from feed-down of heavier particles to the ${\pi^{0}}$ spectrum.
Invariant differential cross section of the $\pi^{0}$ versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.
Invariant differential cross section of the $\eta$ meson versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.
The $\eta/\pi^{0}$ ratio as a function of $p_{\rm T}$ for pp collisions at $\sqrt{s}$ = 13 TeV.
Differential two-particle normalized cumulants ($R_2$) and transverse momentum correlations ($P_2$) are measured as a function of the relative pseudorapidity and azimuthal angle difference $( \Delta \eta, \Delta \varphi )$ of charged particle pairs in minimum bias pp collisions at $\sqrt{\textit{s}}$ = 13 TeV. The measurements use charged hadrons in the pseudorapidity region of $|\eta| < 0.8$ and the transverse momentum range 0.2 $< \textit{p}_{\mathrm T} < $ 2.0 $\mathrm{GeV}/\textit{c}$ in order to focus on soft multiparticle interactions and to complement prior measurements of these correlation functions in p-Pb and Pb-Pb collisions. The correlation functions are reported for both unlike-sign and like-sign pairs and their charge-independent and charge-dependent combinations. Both the $R_2$ and $P_2$ measured in pp collisions exhibit features qualitatively similar to those observed in p-Pb and Pb-Pb collisions. The $\Delta\eta$ and $\Delta\varphi$ root mean square widths of the near-side peak of the correlation functions are evaluated and compared with those observed in p-Pb and Pb-Pb collisions and show smooth evolution with the multiplicity of charged particles produced in the collision. The comparison of the measured correlation functions with predictions from PYTHIA8 shows that this model qualitatively captures their basic structure and characteristics but feature important differences. In addition, the $R_2^{\rm CD}$ is used to determine the charge balance function of hadrons produced within the detector acceptance of the measurements. The integral of the balance function is found to be compatible with those reported by a previous measurement in Pb-Pb collisions. These results, which are sensitive to the interplay between the underlying event and mini-jets in pp collisions, establish a baseline for heavy-ion collisions.
Correlation functions $R_2^{\rm US}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.
Correlation functions $R_2^{\rm LS}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.
Correlation functions $P_2^{\rm US}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.