A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.
Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.
Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Photoproduction at HERA is studied in $ep$ collisions, with the ZEUS detector, for $\gamma p$ centre-of-mass energies ranging from 130-270 GeV. A sample of events with two high-$p_T$ jets ($p_T > 6$ GeV, $\eta <1.6$) and a third cluster in the approximate direction of the electron beam is isolated using a clustering algorithm. These events are mostly due to resolved photoproduction. The third cluster is identified as the photon remnant. Its properties, such as the transverse and longitudinal energy flows around the axis of the cluster, are consistent with those commonly attributed to jets, and in particular with those found for the two jets in these events. The mean value of the photon remnant $p_T$ with respect to the beam axis is measured to be $2.1 \pm 0.2$ GeV, which demonstrates substantial mean transverse momenta for the photon remnant.
Pseudorapidity distribution of the third cluster corrected to the hadron level.
Corrected PT distribution of the third cluster corrected to the hadron level.
Corrected Energy distribution of the third cluster corrected to the hadron level.
We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Rapidity distribution with respect to the Thrust axis.
Charged particle X distribution.
Charged particle PL distribution.