We have searched for exclusive hadronic J/ψ production by looking for narrow resonances in the e+e− mass spectrum of the reaction π−p→e+e−n. No events were observed in the region around 3.1 GeV/c2. The cross section for the reaction π−p→J/ψ n at 13 GeV/c is no more than 103 pb at the 90% confidence level.
Corrected cross section based on 7.4 pct branching ratio.
Using a double arm electromagnetic calorimeter we have searched for narrow states produced in the exclusive reaction π − p→γγn at 13 GeV/c. No enhancements were observed in the mass range 2.0–4.0 GeV/c 2 . For example, the 90% confidence limit on η c production is σ ( π − p→ η c n)× B ( η c → γγ ) < 44 pb.
UPPER LIMIT (90 PCT CL) FOR SIG*BR(ETA/C --> 2 GAMMA).
We report results from a study of π−p→ω0n at 6.0 GeV/c based on 28 000 events from a charged and neutral spectrometer. Background under the ω0 is only 7%, a large improvement over deuterium-bubble-chamber work. Density matrix elements, projected cross sections, and effective trajectories for natural and unnatural exchanges are presented.
No description provided.
No description provided.
No description provided.
We have measured the differential cross section for π−p→η0n at 6.0 GeV/c from 6730 very clean events in which the decay η→π+π−π0 was detected. The high statistics reveals a sizable forward turnover, implying a dominance of the helicity-flip amplitude. A precisely determined A2 trajectory, linear for |t|<1.0 (GeV/c)2, is found from combining our data with those at energies up to 101 GeV.
THE RESOLUTION IN TP IS EVERYWHERE SMALLER THAN THE BIN WIDTH.
An experiment using optical spark chambers and a neutron time-of-flight hodoscope has been performed at the Argonne National Laboratory on the reaction π−p→ω0n. The differential cross section and the experimentally accessible density-matrix elements were determined in the momentum transfer interval 0.05≤|t|≤1.0 (GeV/c)2 at each of three incident pion momenta 3.65, 4.50, and 5.50 GeV/c. Our results show the following general features: (1) a dip in the forward differential cross section for |t|≤0.2 (GeV/c)2, (2) a slope at larger momentum transfers which increases as the incident pion momentum increases, and (3) no dips in either dσdt or ρ11+ρ1−1, the natural-parity exchange combination, at |t|=0.6 (GeV/c)2.
No description provided.
No description provided.