The double differential cross section for pn→pp(1S0)π− at three beam energies has been extracted from the quasifree process pd→pppπ−. A comparison is carried out with single differential cross section measurements for 3He(π−,pn)n, where the pion is thought to be absorbed onto a pp(1S0) “diproton” state. A significant difference is observed in the shape of the angular distribution between the production and absorption data. This difference is ascribed to the effects of the 3He nuclear environment characterizing the absorption process; however, an adequate theoretical explanation is not available.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Data on φ -production obtained by the CERN NA49 experiment for central Pb+Pb collisions at 158 GeV/u are presented. Compared with pp interactions the φ -yield shows substantial strangeness enhancement: the φ /π ratio is found to increase by a factor of 2.6 ± 0.6, which is approximately the square of the K/π enhancement.
5% most central collosions, MT - M0 = 0 - 1.4 GeV, preliminary data.
5% most central events.
K − /K + and p ¯ / p ratios measured in 158 A·GeV Pb+Pb collisions are shown as a function of transverse momentum P T and centrality in top 8.5% central region. Little centrality dependence of the K − / K + and p ¯ / p ratios is observed. The transverse mass m T distribution and dN/dy of K + , K − , p and p ¯ around mid-rapidity are obtained. The temperature T ch and the chemical potentials for both light and strange quarks (μ q , μ s ) at chemical freeze-out are determined by applying simple thermodynamical model to the present data. The resultant μ q , μ s and T ch are compared with those obtained from similar analysis of SPS S+A and AGS Si+A data. The chemical freeze-out temperature T ch at CERN energies is higher than thermal freeze-out temperature T fo which is extracted from m T distribution of charged hadrons. At AGS energies T ch is close to T fo .
Data obtained from the fit of MT spectra.
Data obtained from the fit of MT spectra.
The πpi-system produced in the charge exchange π−p-reaction at 100 GeV/c has been studied. The experiment was performed at the CERN SPS accelerator with the multiphoton hodoscope spectrometer GAMS-400
No description provided.
No description provided.
No description provided.
We report the experimental measurements on the multiplicity of slow target associated particles, in the forward (θlab≤ 90°) and backward (θlab > 90°) hemispheres, and the different correlations betwee
No description provided.
No description provided.
No description provided.
The kinetic energy spectrum and the polarization of the PSI neutron beam produced in the reaction 12C(p,n)X at 0° with 590 MeV polarized protons were investigated. A strong energy dependence of the ne
No description provided.
We have measured the dissociation of 8B in the Coulomb field of 208Pb at Ein=51.9 MeV/nucleon and extracted the cross section of the 7Be(p,γ)8B reaction at 0.4 ≤ Erel≤ 3 MeV, which is of importance fo
The extrapolation to Ecm = 0.0. The statistical and systematic error are combined in quadrature.
J/ ψ and ψ ′ production cross-sections are measured in pp and pd collisions at 450 GeV/ c at the CERN-SPS. The Drell-Yan cross section for muon pairs in the mass range [4.3–8.0] GeV/ c 2 is also determined in the same experiment.
The measured cross section for J/PSI production for P P and P DEUTERIUM interactions times their branching ratio to MU+ MU- pairs.. The fraction of the systematic error (DSYS) which must be taken into account in comparison of the two targets is 0.06 (0.13) for the P (DEUT) target.
The measured cross section for PSI(3685) production in P P and P DEUTERIUM interactions times their branching ratio to MU+ MU- pairs.. The fraction of the systematic error (DSYS) which must be taken into account in comparison of the two targets is 0.003 (0.006) for the P (DEUT) target.
The measured cross section for Drell Yan production in P P and P DEUTERIUM interactions.. The fraction of the systematic error (DSYS) which must be taken into account in comparison of the two targets is 0.5 (1.2) for the P (DEUT) target.
The complete charge distribution of products from Au nuclei fragmenting in nuclear emulsion at 10.7A GeV has been measured. Multiplicities of produced particles and particles associated with the targe
No description provided.
No description provided.
The pion absorption reaction (π+,3p) on Ar was studied at pion energies of 70, 118, 162 and 239 MeV, and on N and Xe at 239 MeV. The 3p cross secti
No description provided.
No description provided.