A search for the pair-production of vector-like quarks optimized for decays into a $Z$ boson and a third-generation Standard Model quark is presented, using the full Run 2 dataset corresponding to 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV, collected in 2015-2018 with the ATLAS detector at the Large Hadron Collider. The targeted final state is characterized by the presence of a $Z$ boson with high transverse momentum, reconstructed from a pair of same-flavour leptons with opposite-sign charges, as well as by the presence of $b$-tagged jets and high-transverse-momentum large-radius jets reconstructed from calibrated smaller-radius jets. Events with exactly two or at least three leptons are used, which are further categorized by the presence of boosted $W$, $Z$, and Higgs bosons and top quarks. The categorization is performed using a neural-network-based boosted object tagger to enhance the sensitivity to signal relative to the background. No significant excess above the background expectation is observed and exclusion limits at 95% confidence level are set on the masses of the vector-like partners $T$ and $B$ of the top and bottom quarks, respectively. In the singlet model, the limits allow $m_T > 1.27$ TeV and $m_B > 1.20$ TeV. In the doublet model, allowed masses are $m_T > 1.46$ TeV and $m_B >1.32$ TeV. In the case of 100% branching ratio for $T\rightarrow Zt$ and 100% branching ratio for $B\rightarrow Zb$, the limits allow $m_T > 1.60$ TeV and $m_B > 1.42$ TeV, respectively.
Expected and observed lower limits on B masses at 95% CL in the BR plane from the combination of the two analysis channels for all BR configurations when assuming a total BR of 100% for H, W and Z.
Expected and observed lower limits on T masses at 95% CL in the BR plane from the combination of the two analysis channels for all BR configurations when assuming a total BR of 100% for H, W and Z.
Expected and observed combined limits at 95% CL on the production cross-section of vector-like T for 100% $T\rightarrow Zt$.
A search for vectorlike quarks is presented, which targets their decay into a $Z$ boson and a third-generation Standard Model quark. In the case of a vectorlike quark $T$ ($B$) with charge $+2/3e$ ($-1/3e$), the decay searched for is $T \rightarrow Zt$ ($B \rightarrow Zb$). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The final state used is characterized by the presence of $b$-tagged jets, as well as a $Z$ boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair and single production of vectorlike quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as - in the case of the single-production selections - the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vectorlike quarks of $m_T > 1030$ GeV ($m_T > 1210$ GeV) and $m_B > 1010$ GeV ($m_B > 1140$ GeV) in the singlet (doublet) model. In the case of 100% branching ratio for $T\rightarrow Zt$ ($B\rightarrow Zb$), the limits are $m_T > 1340$ GeV ($m_B > 1220$ GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vectorlike quark masses.
Comparison of the distribution of the scalar sum of small-$R$ jet transverse momenta, $H_T$, between data and the background prediction in the 0-large-$R$ jet-signal region of the pair-production (PP) $2\ell$ $0-1$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $H_T$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.
Comparison of the distribution of the scalar sum of small-$R$ jet transverse momenta, $H_T$, between data and the background prediction in the 1-large-$R$ jet-signal region of the pair-production (PP) $2\ell$ $0-1$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $H_T$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.
Comparison of the distribution of the invariant mass of the $Z$ boson candidate and the highest-$p_T$ $b$-tagged jet, $m(Zb)$, between data and the background prediction in the signal region of the pair-production (PP) $2\ell$ $\geq 2$J channel. The background prediction is shown post-fit, i.e. after the fit to the data $m(Zb)$ distributions under the background-only hypothesis. The last bin contains the overflow. An example distribution for a $B\bar B$ signal in the singlet model with $m_B$ = 900 GeV is overlaid.