Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 061801, 2015.
Inspire Record 1317640 DOI 10.17182/hepdata.66763

A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.

6 data tables match query

Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as $N_{\text{exp}} \pm 1\sigma$ stat $\pm 1\sigma$ syst. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding "<".

Expected and observed 95% CL cross section exclusion contours for top squark pair production in the plane of top squark lifetime ($c\tau$) and top squark mass. These limits assume a branching fraction of 100\% through the RPV vertex $\tilde{t}$ $\to$ b l, where the branching fraction to any lepton flavor is equal to 1/3. As indicated in the plot, the region to the left of the contours is excluded by this search.

Electron reconstruction efficiency as function of its tranverse impact parameter, $d_0$.

More…

Strange Particle Production in pp Collisions at sqrt(s) = 0.9 and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 05 (2011) 064, 2011.
Inspire Record 890166 DOI 10.17182/hepdata.57531

The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K^0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.

15 data tables match query

The rapidity production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.

The transverse momentum production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.

The rapidity production spectra per NSD event spectra for LAMBDA mesons at 0.9 and 7 TeV.

More…

Search for top squark production in fully-hadronic final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 104 (2021) 052001, 2021.
Inspire Record 1849522 DOI 10.17182/hepdata.103065

A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.

36 data tables match query

The observed 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.

The expected 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.

The observed exclusion contour of the T2tt simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$). No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.

More…

Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 012007, 2018.
Inspire Record 1633588 DOI 10.17182/hepdata.79808

A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance $p_\mathrm{T}^\text{miss}$ in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the $p_\mathrm{T}^\text{miss}$, the scalar sum of jet transverse momenta, and the $m_{\mathrm{T2}}$ mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. These limits extend previous results.

20 data tables match query

Figure 8. The 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which |mStop−mLSP−mTop|≤ 25 GeV and mStop≤ 275 GeV because signal events are essentially indistinguishable from SM ttbar events in this region, rendering the signal event acceptance difficult to model.

Figure 8. Observed exclusion region at 95% CL assuming 100% branching fraction.

Figure 8. Expected exclusion region at 95% CL assuming 100% branching fraction.

More…

Version 2
Search for electroweak production of charginos and neutralinos at $\sqrt{s}$ =13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137460, 2023.
Inspire Record 2085373 DOI 10.17182/hepdata.127766

This Letter presents a search for direct production of charginos and neutralinos via electroweak interactions. The results are based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The search considers final states with large missing transverse momentum and pairs of hadronically decaying bosons WW, WZ, and WH, where H is the Higgs boson. These bosons are identified using novel algorithms. No significant excess of events is observed relative to the expectations from the standard model. Limits at the 95% confidence level are placed on the cross section for production of mass-degenerate wino-like supersymmetric particles $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$, and mass-degenerate higgsino-like supersymmetric particles $\tilde{\chi}_1^\pm$, $\tilde{\chi}_2^0$, and $\tilde{\chi}_3^0$. In the limit of a nearly-massless lightest supersymmetric particle $\tilde{\chi}_1^0$, wino-like particles with masses up to 870 and 960 GeV are excluded in the cases of $\tilde{\chi}_2^0$ $\to$ Z$\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ $\to$ H$\tilde{\chi}_1^0$, respectively, and higgsino-like particles are excluded between 300 and 650 GeV.

6 data tables match query

SM background prediction vs. observation in the b-veto signal region

SM background observation/prediction in the bVeto signal region

The 95% CL observed upper limits on the production cross sections for $\widetilde{\chi}^\pm_1$ $\widetilde{\chi}^\mp_1$ assuming that each $\widetilde{\chi}^\pm_1$ decays to a W boson and $\widetilde{\chi}^0_1$

More…

Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 91 (2015) 052009, 2015.
Inspire Record 1340084 DOI 10.17182/hepdata.66764

A search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 inverse femtobarns. In a search for narrow resonances that couple to quark-quark, quark-gluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude: string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalar diquarks below 4.7 TeV; W' bosons below 1.9 TeV or between 2.0 and 2.2 TeV; Z' bosons below 1.7 TeV; and Randall-Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. The first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.

10 data tables match query

Inclusive dijet mass spectrum from wide jets (points) compared to a fit (solid curve) and to predictions including detector simulation of multijet events and signal resonances. The predicted multijet shape (QCD MC) has been scaled to the data (see text). The vertical error bars are statistical only and the horizontal error bars are the bin widths. For comparison,the signal distributions for a W resonance of mass 1900 GeV and an excited quark of mass 3.6 TeV are shown. The bin-by-bin fit residuals scaled to the statistical uncertainty of the data , (data - fit)/$\sigma_{data}$, are shown at the bottom and compared with the expected signal contributions.

Observed 95% CL upper limits on $\sigma B A$ for narrow qq, qg, and gg resonances, from the inclusive analysis for signal masses between 1.2 and 5.5 TeV.

Observed 95% CL upper limits on $\sigma B A$ for narrow gg/bb, qq/bb, and bg resonances from the b-enriched analysis, for signal masses between 1.2 and 4.0 TeV. The upper limits are given for different ratios $f_{bb}$ for gg/bb and qq/bb resonances, and for 100% branching fraction into bg.

More…

Search for anomalous production of events with three or more leptons in $pp$ collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 032006, 2014.
Inspire Record 1291940 DOI 10.17182/hepdata.64435

A search for physics beyond the standard model in events with at least three leptons is presented. The data sample, corresponding to an integrated luminosity of 19.5 inverse femtobarns of proton-proton collisions with center-of-mass energy sqrt(s) = 8 TeV, was collected by the CMS experiment at the LHC during 2012. The data are divided into exclusive categories based on the number of leptons and their flavor, the presence or absence of an opposite-sign, same-flavor lepton pair (OSSF), the invariant mass of the OSSF pair, the presence or absence of a tagged bottom-quark jet, the number of identified hadronically decaying tau leptons, and the magnitude of the missing transverse energy and of the scalar sum of jet transverse momenta. The numbers of observed events are found to be consistent with the expected numbers from standard model processes, and limits are placed on new-physics scenarios that yield multilepton final states. In particular, scenarios that predict Higgs boson production in the context of supersymmetric decay chains are examined. We also place a 95% confidence level upper limit of 1.3% on the branching fraction for the decay of a top quark to a charm quark and a Higgs boson (t to c H), which translates to a bound on the left- and right-handed top-charm flavor-violating Higgs Yukawa couplings, lambda[H, tc] and lambda[H, ct], respectively, of sqrt(abs(lambda[H, tc])^2 + abs(lambda[H, ct])^2) < 0.21.

21 data tables match query

The product of acceptance and efficiency for the calculation of the 95% C.L. limits for the natural Higgsino NLSP scenario with BR(NEUTRALINO1 --> HIGGS GRAVITINO) = BR(NEUTRALINO1 --> Z GRAVITINO) = 0.5 for strong plus electroweak production.

The product of acceptance and efficiency for the calculation of the 95% C.L. limits for the natural Higgsino NLSP scenario with BR(NEUTRALINO1 --> HIGGS GRAVITINO) = 1.0 for strong plus electroweak production.

The product of acceptance and efficiency for the calculation of the 95% C.L. limits for the natural Higgsino NLSP scenario with BR(NEUTRALINO1 --> Z0 GRAVITINO) = 1.0 for strong plus electroweak production.

More…

Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 371, 2016.
Inspire Record 1424833 DOI 10.17182/hepdata.73976

A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at sqrt(s) = 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns. The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t t-bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95% confidence level for the product of the production cross section and branching fraction sigma(gg to X) B(X to HH to b b-bar b b-bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with a mass scale Lambda[R] = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV.

7 data tables match query

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPLP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for LPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

More…

Measurement of the mass of the top quark in decays with a J/psi meson in pp collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 12 (2016) 123, 2016.
Inspire Record 1480862 DOI 10.17182/hepdata.75539

A first measurement of the top quark mass using the decay channel t to (W to l nu) (b to J/psi + X to mu+ mu- + X) is presented. The analysis uses events selected from the proton-proton collisions recorded with the CMS detector at the LHC at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns, with 666 t t-bar and single top quark candidate events containing a reconstructed J/psi candidate decaying into an oppositely-charged muon pair. The mass of the (J/psi + l) system, where l is an electron or a muon from W boson decay, is used to extract a top quark mass of 173.5 +/- 3.0 (stat) +/- 0.9 (syst) GeV.

2 data tables match query

Number of selected events from simulations and observed in data. The uncertainties are statistical.

Summary of the impact of systematic uncertainties on the top quark mass according to the contributions from each source.


Angular analysis of the decay B0 to K*0 mu mu from pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 424-448, 2016.
Inspire Record 1385600 DOI 10.17182/hepdata.17057

The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.

2 data tables match query

The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.

The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.