Showing 4 of 4 results
This paper reports constraints on Higgs boson production with transverse momentum above 1 TeV. The analyzed data from proton-proton collisions at a center-of-mass energy of 13 TeV were recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018 and correspond to an integrated luminosity of 136 fb$^{-1}$. Higgs bosons decaying into $b\bar{b}$ are reconstructed as single large-radius jets recoiling against a hadronic system and identified by the experimental signature of two $b$-hadron decays. The experimental techniques are validated in the same kinematic regime using the $Z\rightarrow b\bar{b}$ process.The 95$\% $ confidence-level upper limit on the cross section for Higgs boson production with transverse momentum above 450 GeV is 115 fb, and above 1 TeV it is 9.6 fb. The Standard Model cross section predictions for a Higgs boson with a mass of 125 GeV in the same kinematic regions are 18.4 fb and 0.13 fb, respectively.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Standard Model cross sections:</b> <a href="102183?table=SMcrosssections">table</a><br/><br/> <b>Cutflow ggF:</b> <a href="102183?table=CutflowggF">table</a><br/><br/> <b>Cutflow VBF:</b> <a href="102183?table=CutflowVBF">table</a><br/><br/> <b>Cutflow VH:</b> <a href="102183?table=CutflowVH">table</a><br/><br/> <b>Cutflow ttH:</b> <a href="102183?table=CutflowttH">table</a><br/><br/> <b>Production mode fractional contributions::</b> <a href="102183?table=Fractionalcontribution">table</a><br/><br/> <b>Acceptance times efficiency - fiducial:</b> <a href="102183?table=Acceptancetimesefficiency-fiducial">table</a><br/><br/> <b>Acceptance times efficiency - differential:</b> <a href="102183?table=Acceptancetimesefficiency-differential">table</a><br/><br/> <b>Yield table - fiducial:</b> <a href="102183?table=Eventyields-fiducial">table</a><br/><br/> <b>Yield table - differential:</b> <a href="102183?table=Eventyields-differential">table</a><br/><br/>
Predicted Higgs boson production cross sections within fiducial volumes obtained from the four production mode MC samples (ggF, VBF, VH, and ttH) described in Section 3 with and without higher order electroweak (EW) corrections. All μH values reported are with respect to cross section with EW corrections.
The efficiency for simulated ggF events to pass each analysis cut.
The efficiency for simulated VBF events to pass each analysis cut.
The efficiency for simulated VH events to pass each analysis cut.
The efficiency for simulated ttH events to pass each analysis cut.
The fractional contribution of each production mode to a given analysis region around the Higgs boson peak, defined as 105 < mJ < 140 GeV. The fraction is given with respect to the total signal yield in the analysis region in question.
Signal acceptance times efficiency within the fiducial volume used in the fiducial region.
Signal acceptance times efficiency for the STXS volumes in the differential measurement. Along with the pTH requirements shown, |yH | < 2 is required. For events with pTH < 300 GeV, the acceptance times efficiency is less than 0.1 × 10−2.
Event yields and associated uncertainties after the global likelihood fit in the pT(H) > 450 GeV fiducial region. The total background yield can differ from the sum of the individual components due to rounding.
Event yields and associated uncertainties after the global likelihood fit of the differential regions. The total background yield can differ from the sum of the individual components due to rounding. The five STXS volumes are labeled pT0–pT4 corresponding to pTH < 300 GeV, 300 – 450 GeV, 450 – 650 GeV, 650 – 1000 GeV, and > 1000 GeV, respectively. The pT0 event yield is constrained to its SM value within the theoretical and experimental uncertainties and free parameters act independently on the remaining four volumes.
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC. The search considers the $Z$ boson decaying into electrons or muons and the $H$ boson into a pair of $b$-quarks or $W$ bosons. The mass range considered is 230-800 GeV for the $A$ boson and 130-700 GeV for the $H$ boson. The data are in good agreement with the background predicted by the Standard Model, and therefore 95% confidence-level upper limits for $\sigma \times B(A\rightarrow ZH) \times B(H\rightarrow bb$ or $H\rightarrow WW)$ are set. The upper limits are in the range 0.0062-0.380 pb for the $H\rightarrow bb$ channel and in the range 0.023-8.9 pb for the $H\rightarrow WW$ channel. An interpretation of the results in the context of two-Higgs-Doublet models is also given.
The mass distribution of the bb system before any mbb window cuts for the 2 tag category in b-associated production. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mass distribution of the bb system before any mbb window cuts for the 3 tag category in b-associated production. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(600, 300) GeV in the 2 tag category with gluon-gluon fusion production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(600, 300) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH)=(670, 500) GeV in the 2 tag category with gluon-gluon fusion production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for a narrow width A boson produced via b-associated production. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-1 with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the 2HDM of type-2 with tan(beta)=20. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=2. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the lepton specific 2HDM with tan(beta)=3. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=1. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=5. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=10. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
Upper bounds at 95% CL on the total production cross-section (ggA + bbA) times the branching ratio B(A->ZH)xB(H->bb) for an A boson in the flipped 2HDM with tan(beta)=20. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used and cos(beta-alpha)=0 is assumed. The excluded contours in the figure correspond to the points of the 2HDM parameter space where the expected and observed limits match the theoretical prediction for the cross-section in the model.
The mass distribution of the 4q system before any m4q window cuts for gluon-gluon fusion for the llWW channel. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH)=(600, 300) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH)=(670, 500) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for a narrow width A boson produced via gluon-gluon fusion production. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 10% with respect to its mass, produced via gluon-gluon fusion for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 10% with respect to its mass, via b-associated production for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 20% with respect to its mass, produced via gluon-gluon fusion for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->bb) in pb for an A boson with a natural width that is 20% with respect to its mass, via b-associated production for the llbb final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for an A boson with a natural width that is 10% with respect to its mass, produced via gluon-gluon fusion for the llWW final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
Upper bounds at 95% CL on the production cross-section times the branching ratio B(A->ZH)xB(H->WW) in pb for an A boson with a natural width that is 20% with respect to its mass, produced via gluon-gluon fusion for the llWW final state. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 130) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 130) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (450, 140) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (450, 140) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 150) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 150) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 160) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 160) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 170) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 170) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 180) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 180) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (420, 190) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (420, 190) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (490, 200) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (490, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (430, 210) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 220) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (500, 230) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (510, 240) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 250) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 260) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (530, 270) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 280) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 290) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 300) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 310) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (560, 320) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 330) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 340) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 350) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 360) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (590, 370) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 380) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 390) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (610, 400) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 410) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 420) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 430) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 440) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (640, 450) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 460) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 470) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (660, 480) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 490) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 510) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 520) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (690, 530) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 540) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 550) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 560) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 570) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (720, 580) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 590) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 600) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (740, 610) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 620) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 630) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 640) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 650) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (770, 660) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 670) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 680) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (790, 690) GeV in the 2 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 130) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 130) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (450, 140) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (450, 140) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 150) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 150) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (460, 160) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (460, 160) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 170) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 170) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (470, 180) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (470, 180) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (420, 190) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (420, 190) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (490, 200) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (490, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (430, 210) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (440, 220) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (500, 230) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (510, 240) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 250) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (520, 260) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (530, 270) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 280) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (540, 290) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 300) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (550, 310) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (560, 320) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 330) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (570, 340) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 350) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (580, 360) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (590, 370) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 380) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (600, 390) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (610, 400) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 410) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (620, 420) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 430) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (630, 440) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (640, 450) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 460) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (650, 470) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (660, 480) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 490) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (670, 500) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 510) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (680, 520) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (690, 530) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 540) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (700, 550) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 560) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (710, 570) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (720, 580) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 590) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (730, 600) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (740, 610) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 620) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (750, 630) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 640) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (760, 650) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (770, 660) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 670) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (780, 680) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The mllbb mass distribution for the mbb window defined for (mA, mH) = (790, 690) GeV in the 3 tag category with b-associated production is shown. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->bb) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (400, 200) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (400, 200) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (430, 210) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (430, 210) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (440, 220) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (440, 220) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (500, 230) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (500, 230) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (510, 240) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (510, 240) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (520, 250) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 250) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (520, 260) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (520, 260) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (530, 270) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (530, 270) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (540, 280) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 280) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (540, 290) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (540, 290) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (550, 300) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 300) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (550, 310) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (550, 310) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (560, 320) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (560, 320) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (570, 330) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 330) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (570, 340) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (570, 340) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (580, 350) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 350) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (580, 360) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (580, 360) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (590, 370) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (590, 370) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (600, 380) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 380) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (600, 390) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (600, 390) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (610, 400) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (610, 400) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (620, 410) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 410) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (620, 420) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (620, 420) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (630, 430) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 430) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (630, 440) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (630, 440) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (640, 450) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (640, 450) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (650, 460) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 460) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (650, 470) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (650, 470) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (660, 480) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (660, 480) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (670, 490) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 490) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (670, 500) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (670, 500) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (680, 510) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 510) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (680, 520) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (680, 520) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (690, 530) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (690, 530) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (700, 540) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 540) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (700, 550) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (700, 550) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (710, 560) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 560) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (710, 570) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (710, 570) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (720, 580) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (720, 580) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (730, 590) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 590) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (730, 600) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (730, 600) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (740, 610) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (740, 610) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (750, 620) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 620) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (750, 630) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (750, 630) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (760, 640) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 640) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (760, 650) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (760, 650) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (770, 660) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (770, 660) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (780, 670) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 670) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (780, 680) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (780, 680) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (790, 690) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (790, 690) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
The m2l4q mass distribution for the m4q window defined for (mA, mH) = (800, 700) GeV with gluon-gluon fusion production is shown for the llWW channel. The number of entries shown in each bin is the number of events in that bin divided by the width of the bin. The signal distribution for (mA, mH) = (800, 700) GeV is also shown, and is normalised such that the production cross-section times the branching ratios B(A->ZH)xB(H->WW) corresponds to 1 pb. Background components are displayed separately.
This paper reports on a search for an extended scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model.
The dijet mass distribution in data and simulated background events after requiring all the analysis selections, for μμ + ee events. The various signal hypotheses displayed have been scaled to a cross section of 1 pb for display purposes.
The llbb mass distribution in data and simulated background events after requiring all the analysis selections, for μμ + ee events. The various signal hypotheses displayed have been scaled to a cross section of 1 pb for display purposes.
The rho distributions for the same-flavour category events corresponding to a signal hypothesis with mH = 261 GeV and mA = 150 GeV. The signal is normalised to its theoretical cross section.
The rho distributions for the mixed-flavour category events corresponding to a signal hypothesis with mH = 261 GeV and mA = 150 GeV.
The rho distributions for the same-flavour category events corresponding to a signal hypothesis with mH = 442 GeV and mA = 193 GeV. The signal is normalised to its theoretical cross section.
The rho distributions for the mixed-flavour category events corresponding to a signal hypothesis with mH = 442 GeV and mA = 193 GeV.
Expected and observed 95% CL upper limits on the product of the production cross section and branching fraction for H(A) -> ZA(H) -> bbbar as a function of mA and mH. The limits are computed using the asymptotic CLs method, combining the ee and μμ channels.
Expected and observed 95% CL upper limits on the signal strength for the Type-II 2HDM benchmark (tan(beta)=1.5, cos(beta-alpha)=0.01) as a function of mA and mH . The limits are computed using the asymptotic CLs method, combining the ee and μμ channels.
Expected and observed 95% CL upper limits on the signal strength for the Type-II 2HDM benchmark (mH = 379 GeV and m A = 172 GeV) as a function of tan(beta) and cos(beta-alpha). The limits are computed using the asymptotic CLs method, combining the ee and μμ channels.
P-value for H(A) -> ZA(H) -> bbbar production as a function of mA and mH. The limits are computed using the asymptotic CLs method, combining the ee and μμ channels.
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the $Z$ boson decaying to electrons or muons and the $H$ boson into a pair of $b$-quarks. No evidence for the production of an $A$ boson is found. Considering each production process separately, the 95% confidence-level upper limits on the $pp\rightarrow A\rightarrow ZH$ production cross-section times the branching ratio $H\rightarrow bb$ are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the $b$-associated process for the mass ranges 130-700 GeV of the $H$ boson and process for the mass ranges 130-700 GeV of the $H$ boson and 230-800 GeV of the $A$ boson. The results are interpreted in the context of the two-Higgs-doublet model.
The signal efficiency for the production modes (gluon-gluon fusion and b-associated production) and the signal regions used in the analysis. The efficiency denominator has the total number of generated MC events. The numerator includes the events passing the full signal region selection, including the mbb window cuts. The table shows for each signal mass pair (mA, mH) 3 efficiencies corresponding to the two production modes in the two categories, 2tag and 3tag. These corresponds to "nb = 2 category" and "nb >= 3 category", respectively, of the preprint. No numbers for gluon-gluon fusion in the 3tag category are provided since those are not used in the analysis. The efficiencies are given in fractions.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced in association with b-quarks. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the combination of the nb=2 and nb>=3 categories.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 2, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 3, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 130 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 130 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 140 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 140 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 150 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 150 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 160 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 160 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 170 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 170 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 180 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 180 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 190 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 190 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 210 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 210 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 220 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 220 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 230 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 230 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 240 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 240 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 250 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 250 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 260 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 260 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 270 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 270 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 280 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 280 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 290 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 290 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 310 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 310 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 320 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 320 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 330 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 330 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 340 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 340 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 350 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 350 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 360 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 360 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 370 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 370 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 380 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 380 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 390 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 390 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 400 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 400 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 410 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 410 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 420 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 420 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 430 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 430 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 440 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 440 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 450 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 450 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 460 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 460 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 470 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 470 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 480 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 480 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 490 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 490 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 510 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 510 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 520 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 520 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 530 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 530 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 540 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 540 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 550 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 550 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 560 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 560 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 570 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 570 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 580 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 580 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 590 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 590 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 600 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 600 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 610 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 610 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 620 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 620 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 630 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 630 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 640 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 640 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 650 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 650 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 660 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 660 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 670 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 670 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 680 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 680 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 690 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 690 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 700 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 700 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 200 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 200 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 300 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 300 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 500 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 500 GeV for the nb >= 3 (3 tag) category.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.