This article reports on a search for dijet resonances using $132$ fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The search is performed solely on jets reconstructed within the ATLAS trigger to overcome bandwidth limitations imposed on conventional single-jet triggers, which would otherwise reject data from decays of sub-TeV dijet resonances. Collision events with two jets satisfying transverse momentum thresholds of $p_{\textrm{T}} \ge 85$ GeV and jet rapidity separation of $|y^{*}|<0.6$ are analysed for dijet resonances with invariant masses from $375$ to $1800$ GeV. A data-driven background estimate is used to model the dijet mass distribution from multijet processes. No significant excess above the expected background is observed. Upper limits are set at $95\%$ confidence level on coupling values for a benchmark leptophobic axial-vector $Z^{\prime}$ model and on the production cross-section for a new resonance contributing a Gaussian-distributed line-shape to the dijet mass distribution.
Observed $m_{jj}$ distribution for the J50 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed $m_{jj}$ distribution for the J100 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed 95% $\text{CL}_\text{S}$ upper limits on the production cross-section times acceptance times branching ratio to jets, $\sigma \cdot A \cdot \text{BR}$, of Gaussian-shaped signals of 5%, 10%, and 15% width relative to their peak mass, $m_G$. Also included are the corresponding expected upper limits predicted for the case the $m_{jj}$ distribution is observed to be identical to the background prediction in each bin and the $1\sigma$ and $2\sigma$ envelopes of outcomes expected for Poisson fluctuations around the background expectation. Limits are derived from the J50 signal region.
Measurements of identified hadrons as a function of the charged-particle multiplicity in pp collisions enable a search for the onset of collective effects in small collision systems. With such measurements, it is possible to study the mechanisms that determine the shapes of hadron transverse momentum ($p_{\rm{T}}$) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in the hadron-gas phase, and to investigate different explanations for the multiplicity evolution of strangeness production provided by phenomenological models. In this paper, these topics are addressed through measurements of the $\rm{K}^{*}(892)^{0}$ and $\phi(1020)$ mesons at midrapidity in pp collisions at $\sqrt{s}$ = 13 TeV as a function of the charged-particle multiplicity. The results include the $p_{\rm{T}}$ spectra, $p_{\rm{T}}$-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed.
K$^{*0}$ transverse momentum spectrum - V0M multiplicity class I, average of particle and antiparticle
K$^{*0}$ transverse momentum spectrum - V0M multiplicity class II, average of particle and antiparticle
K$^{*0}$ transverse momentum spectrum - V0M multiplicity class III, average of particle and antiparticle
Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb$^{-1}$. The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $M_\mathrm{T2}$ for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving $R$-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.
Definitions of super signal regions, along with predictions, observed data, and the observed 95% CL upper limits on the number of signal events contributing to each region ($N_{95}^\mathrm{max}$). The limits are given under assumptions of 0% and 15% for the uncertainty on the signal acceptance. All selection criteria as in the full analysis are applied. For regions with $N_\mathrm{j}=1$, $H_\mathrm{T}\equiv p_\mathrm{T}^\mathrm{jet}$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks ($\tilde{g}\to q\bar{q}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q\bar{q}\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either a $\tilde{\chi}_2^0$ that decays to $Z\tilde{\chi}_1^0$ (1/3 of the time), or a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$ (2/3 of the time). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j V\tilde{\chi}_1^0$.