Measurements of the inclusive jet cross section with the anti-kt clustering algorithm are presented for two radius parameters, R=0.5 and 0.7. They are based on data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to parton showers describe the data best.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 0 < |y| < 0.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 0.5 < |y| < 1. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
Inclusive Jet cross section with R = 0.5 in the rapidity bin 1 < |y| < 1.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.
A measurement of inclusive ZZ production cross section and constraints on anomalous triple gauge couplings in proton-proton collisions at sqrt(s) = 8 TeV are presented. A data sample, corresponding to an integrated luminosity of 19.6 inverse femtobarns was collected with the CMS experiment at the LHC. The measurements are performed in the leptonic decay modes ZZ to lll'l', where l = e, mu and l' = e, mu, tau. The measured total cross section, sigma(pp to ZZ) = 7.7 +/- 0.5 (stat.) +0.5-0.4 (syst.) +/- 0.4 (theo.) +/- 0.2 (lum.) pb for both Z bosons produced in the mass range 60 < m[Z] < 120 GeV, is consistent with standard model predictions. Differential cross sections are measured and well described by the theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ gamma couplings at the 95% confidence level: -0.004 < f[4,Z] < 0.004, -0.004 < f[5,Z] < 0.004, -0.005 < f[4,gamma] < 0.005, and -0.005 < f[5,gamma] < 0.005.
The total ZZ production cross section (P P --> Z0 Z0 X, 60GeV < mll < 120GeV) as measured in each decay channel and for the combination of all channels. The first systematic uncertainty is detector systematics, second is theoretical systematics and the third is luminosity systematic uncertainty.
Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the highest pT lepton in the event.
Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the Z1, where Z1 is defined as highest pT Z candidate.
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at sqrt(s) = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range abs(eta) < 2.5, abs(eta) not in [1.44,1.57] and with an angular separation Delta R > 0.45, is 17.2 +/- 0.2 (stat.) +/- 1.9 (syst.) +/- 0.4 (lum.) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
Values of D(SIG)/DM(GAMMA GAMMA) for the data. The error given on each value is the total uncertainty.
Values of D(SIG)/DPT(GAMMA GAMMA) for the data. The error given on each value is the total uncertainty.
Values of D(SIG)/DDELTA(PHI(GAMMA GAMMA)) (pb/rad) for the data. The error given on each value is the total uncertainty.
Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
Production of $\Upsilon$ mesons in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{NN}}=5 \mathrm{TeV}$ is studied with the LHCb detector. The analysis is based on a data sample corresponding to an integrated luminosity of $1.6 \mathrm{nb}^{-1}$. The $\Upsilon$ mesons of transverse momenta up to $15 \mathrm{GeV}/c$ are reconstructed in the dimuon decay mode. The rapidity coverage in the centre-of-mass system is $1.5 < y < 4.0$ (forward region) and $-5.0 < y < -2.5$ (backward region). The forward-backward production ratio and the nuclear modification factor for $\Upsilon(1S)$ mesons are determined. The data are compatible with the predictions for a suppression of $\Upsilon(1S)$ production with respect to proton-proton collisions in the forward region, and an enhancement in the backward region. The suppression is found to be smaller than in the case of prompt $J/\psi$ mesons.
The product of production cross-section and branching fraction for upsilon mesons in the backward and forward regions.
The product of production cross-section and branching fraction for UPSILON(1S) in the common rapidity range.
The production ratios of excited upsilon mesons in the backward and forward regions.
A search for new resonances decaying to WW, ZZ, or WZ is presented. Final states are considered in which one of the vector bosons decays leptonically and the other hadronically. Results are based on data corresponding to an integrated luminosity of 19.7 inverse femtobarns recorded in proton-proton collisions at $\sqrt{s}$ = 8 TeV with the CMS detector at the CERN LHC. Techniques aiming at identifying jet substructures are used to analyze signal events in which the hadronization products from the decay of highly boosted W or Z bosons are contained within a single reconstructed jet. Upper limits on the production of generic WW, ZZ, or WZ resonances are set as a function of the resonance mass and width. We increase the sensitivity of the analysis by statistically combining the results of this search with a complementary study of the all-hadronic final state. Upper limits at 95% confidence level are set on the bulk graviton production cross section in the range from 700 to 10 femtobarns for resonance masses between 600 and 2500 GeV, respectively. These limits on the bulk graviton model are the most stringent to date in the diboson final state.
Observed data distributions as a 1D histogram with statistical errors representing the event yields as a function of the reconstructed M(lnuJ), for the muon high purity channel. The value of mass on the x axis is given for the center of the bin.
Observed data distributions as a 1D histogram with statistical errors representing the event yields as a function of the reconstructed M(lnuJ), for the muon low purity channel. The value of mass on the x axis is given for the center of the bin.
Observed data distributions as a 1D histogram with statistical errors representing the event yields as a function of the reconstructed M(lnuJ), for the electron high purity channel. The value of mass on the x axis is given for the center of the bin.
A search is reported for massive resonances decaying into a quark and a vector boson (W or Z), or two vector bosons (WW, WZ, or ZZ). The analysis is performed on an inclusive sample of multijet events corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. The search uses novel jet-substructure identification techniques that provide sensitivity to the presence of highly boosted vector bosons decaying into a pair of quarks. Exclusion limits are set at a confidence level of 95% on the production of: (i) excited quark resonances q* decaying to qW and qZ for masses less than 3.2 TeV and 2.9 TeV, respectively, (ii) a Randall-Sundrum graviton G[RS] decaying into WW for masses below 1.2 TeV, and (iii) a heavy partner of the W boson W' decaying into WZ for masses less than 1.7 TeV. For the first time mass limits are set on W' to WZ and G[RS] to WW in the all-jets final state. The mass limits on q* to qW, q* to qZ, W' to WZ, G[RS] to WW are the most stringent to date. A model with a "bulk" graviton G[Bulk] that decays into WW or ZZ bosons is also studied.
DATA - Double W/Z tagged events in HIGH purity bin.
BACKGROUND - Double W/Z tagged background in HIGH purity bin estimated from a fit to data.
BACKGROUND PLUS - Double W/Z tagged background variation upward (1 sigma) in HIGH purity bin estimated from a fit to data.
Pseudorapidity (eta) distributions of charged particles produced in proton-proton collisions at a centre-of-mass energy of 8 TeV are measured in the ranges abs(eta) < 2.2 and 5.3 < abs(eta) < 6.4 covered by the CMS and TOTEM detectors, respectively. The data correspond to an integrated luminosity of 45 inverse microbarns. Measurements are presented for three event categories. The most inclusive category is sensitive to 91-96% of the total inelastic proton-proton cross section. The other two categories are disjoint subsets of the inclusive sample that are either enhanced or depleted in single diffractive dissociation events. The data are compared to models used to describe high-energy hadronic interactions. None of the models considered provide a consistent description of the measured distributions.
Charged particle multiplicity (Inclusive) -- syst -- BB: bin-by-bin uncertainty.
Charged particle multiplicity (Non Single Diffractive dissociation (NSD) enhanced) -- syst -- BB: bin-by-bin uncertainty.
Charged particle multiplicity (Single Diffractive dissociation (SD) enhanced) -- syst -- BB: bin-by-bin uncertainty.
A search for physics beyond the standard model in events with at least three leptons is presented. The data sample, corresponding to an integrated luminosity of 19.5 inverse femtobarns of proton-proton collisions with center-of-mass energy sqrt(s) = 8 TeV, was collected by the CMS experiment at the LHC during 2012. The data are divided into exclusive categories based on the number of leptons and their flavor, the presence or absence of an opposite-sign, same-flavor lepton pair (OSSF), the invariant mass of the OSSF pair, the presence or absence of a tagged bottom-quark jet, the number of identified hadronically decaying tau leptons, and the magnitude of the missing transverse energy and of the scalar sum of jet transverse momenta. The numbers of observed events are found to be consistent with the expected numbers from standard model processes, and limits are placed on new-physics scenarios that yield multilepton final states. In particular, scenarios that predict Higgs boson production in the context of supersymmetric decay chains are examined. We also place a 95% confidence level upper limit of 1.3% on the branching fraction for the decay of a top quark to a charm quark and a Higgs boson (t to c H), which translates to a bound on the left- and right-handed top-charm flavor-violating Higgs Yukawa couplings, lambda[H, tc] and lambda[H, ct], respectively, of sqrt(abs(lambda[H, tc])^2 + abs(lambda[H, ct])^2) < 0.21.
Observed and expected numbers of events with four or more leptons with the scalar sum of jet transverse momentum values HT > 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
Observed and expected numbers of events with four or more leptons with the scalar sum of jet transverse momentum values HT < 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
Observed and expected numbers of events with exactly three leptons with the scalar sum of jet transverse momentum values HT > 200 GeV. "On-Z" refers to events with at least one E+ E- or MU+ MU- (OSSF) pair with dilepton mass between 75 and 105 GeV, while "Off-Z" refers to events with one or two OSSF pairs, none of which fall in this mass range. The OSSFN designation refers to the number of E+ E- and MU+ MU- pairs in the event. Search channels binned in ET have been combined into coarse ET bins for the purposes of presentation.
The fixed-target MIPP experiment, Fermilab E907, was designed to measure the production of hadrons from the collisions of hadrons of momenta ranging from 5 to 120 GeV/c on a variety of nuclei. These data will generally improve the simulation of particle detectors and predictions of particle beam fluxes at accelerators. The spectrometer momentum resolution is between 3 and 4%, and particle identification is performed for particles ranging between 0.3 and 80 GeV/c using $dE/dx$, time-of-flight and Cherenkov radiation measurements. MIPP collected $1.42 \times10^6$ events of 120 GeV Main Injector protons striking a target used in the NuMI facility at Fermilab. The data have been analyzed and we present here charged pion yields per proton-on-target determined in bins of longitudinal and transverse momentum between 0.5 and 80 GeV/c, with combined statistical and systematic relative uncertainties between 5 and 10%.
The production yields of PI+ and PI- and the ratio of these yields. The first uncertainty given on each value combines statistical uncertainties and systematic uncertainties from backgrounds.