This paper presents the first direct measurement of the $B$ meson differential cross section, $d\sigma/dp_T$, in $p\overline{p}$ collisions at $\sqrt{s}=1.8$ TeV using a sample of $19.3 \pm 0.7$ pb$~{-1}$ accumulated by the Collider Detector at Fermilab (CDF). The cross section is measured in the central rapidity region $|y| < 1$ for $p_T(B) > 6.0$ GeV/$c$ by fully reconstructing the $B$ meson decays $B~{+}\rightarrow J/\psi K~{+}$ and $B~{0}\rightarrow J/\psi K~{*0}(892)$, where $J/\psi \rightarrow \mu~+\mu~-$ and $K~{*0} \rightarrow K~+ \pi~-$. A comparison is made to the theoretical QCD prediction calculated at next-to-leading order.
Charged B meson cross section.
Average B meson cross section (including charged and neutral).
Total integrated B meson cross section above 6 GeV.
We present an analysis of data from p p¯ collisions at a center-of-mass energy of √s =1800 GeV. A measurement is made of the ratio R≡σB(p p¯→W→eν)/σB(p p¯→Z0→ee). The data represent 19.6 pg−1 collected by the Collider Detector at Fermilab during the 1992–1993 collider run of the Fermilab Tevatron. We find R=10.90±0.32(stat)±0.29(syst), and from this value we extract a measurement of the W→eν branching ratio Γ(W→eν)/Γ(W)=0.1094±0.0033(stat)±0.0031(syst). From this branching ratio we set a limit on the top quark mass of mt>62 GeV/c2 at the 95% confidence level. In contrast with direct searches for the top quark, this limit makes no assumptions about the allowed decay modes of the top quark. In addition, we use a calculation of the leptonic width Γ(W→eν) to obtain a value for the W total decay width: Γ(W)=2.064±0.060(stat)±0.059(syst) GeV.
The cross section ratio contains the branching ratio of W --> E NU and Z0 --> E+ E-. RE = PBAR P --> W+ X.
Inclusive transverse momentum spectra of charged particles in photoproduction events in the laboratory pseudorapidity range $-1.2<\eta<1.4$ have been measured up to $p_{T}=8\GeV $ using the ZEUS detector. Diffractive and non--diffractive reactions have been selected with an average $\gamma p$ centre of mass (c.m.) energy of $\langle W \rangle = 180\GeV$. For diffractive reactions, the $p_{T}$ spectra of the photon dissociation events have been measured in two intervals of the dissociated photon mass with mean values $\langle M_{X} \rangle = 5$ GeV and $10$ GeV. The inclusive transverse momentum spectra fall exponentially in the low $p_{T}$ region. The non--diffractive data show a pronounced high $p_{T}$ tail departing from the exponential shape. The $p_{T}$ distributions are compared to lower energy photoproduction data and to hadron--hadron collisions at a similar c.m. energy. The data are also compared to the results of a next--to--leading order QCD calculation.
Rate of charged particle production in an average non-diffractive event.
Rate of charged particle production in an average event with a diffractively dissociated photon state of mass M(X) = 5 GeV.
Rate of charged particle production in an average event with a diffractively dissociated photon state of mass M(X) = 10 GeV.
The properties of two-, three-, four-, five-, and six-jet events with multijet masses >600 GeV /c2 are compared with QCD predictions. The shapes of the multijet-mass and leading-jet-angular distributions are approximately independent of jet multiplicity and are well described by the NJETS matrix element calculation and the HERWIG parton shower Monte Carlo predictions. The observed jet transverse momentum distributions for three- and four-jet events discriminate between the matrix element and parton shower predictions, the data favoring the matrix element calculation.
Exclusive 2-jet mass distribution.
Exclusive 3-jet mass distribution.
Exclusive 4-jet mass distribution.
The decay τ−→π−−+vτ has been studied using data collected with the OPAL detector at LEP during 1992 and 1993. The hadronic structure functions for this decay are measured model independently assuming G-parity invariance and neglecting scalar currents. Simultaneously the parity violating asymmetry parameter is determined to be\(\gamma VA = 1.08 _{ - 0.41- 0.25}^{ + 0.46+ 0.14} \), consistent with the Standard Model prediction of γVA=1 for left-handed tau neutrinos. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the invariant 3π mass as well as 2π mass projections of the Dalitz plot. The model dependent mass and width of thea1 resonance are measured to be\(m_{a_1 }= 1.266 \pm 0.014_{ - 0.002}^{ + 0.012} \) GeV and\(\Gamma _{a_1 }= 0.610 \pm 0.049_{ - 0.019}^{ + 0.053} \) GeV for the Kühn and Santamaria model and\(m_{a_1 }= 1.202 \pm 0.009_{ - 0.001}^{ + 0.009} \) GeV and\(\Gamma _{a_1 }= 0.422 \pm 0.023_{ - 0.004}^{ + 0.033} \) GeV for the Isgur et al. model. The model dependent values obtained for the parity violating asymmetry parameter are γVA=0.87±0.27−0.06+0.05 for the Kühn and Santamaria model and γVA=1.10±0.31−0.14+0.13 for the Isgur et al. model. Within the Isgur et al. model the ratio of theS-andD-wave amplitudes is measured to beD/S=−0.09±0.03±0.01.
See paper for definition of four weak decay formfactors : wa, wc, wd, we. For TAU+-.
Here ASYM is parity violating asymmetry parameter gamma_VA = 2g_v*g_A/(g_v **2+g_A**2) (see paper).
Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xg, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xg $\ge 0.75$ and xg $< 0.75$. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the gluon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.
Direct photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.
Resolved photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.
We report the first observation of charmed mesons with the ZEUS detector at HERA using the decay channel ${\rm D}~{*+}\rightarrow (\Do \rightarrow {\rm K}~-\pi~+)\pi~+$ (+ c.c.). Clear signals in the mass difference $\Delta M$=$M$(D$~*$)--$M$(D$~0)$ as well as in the $M(K\pi)$ distribution at the D$~0$ mass are found. The $ep$ cross section for inclusive \DSpm\ production with $Q~2<4\GeV~2$ in the $\gamma p$ centre-of-mass energy range $115 < W < 275$ \GeV\ has been determined to be $(32 \pm 7~{+4}_{-7} )$ nb in the kinematic region \mbox{\{$p_T(\DS)\geq $ 1.7 \,\GeV, $|\eta(\DS)| < 1.5 $\}}. Ex\-tra\-po\-la\-ting outside this region, assuming a mass of the charm quark of 1.5 \GeV, we estimate the $ep$ charm cross section to be $\sigma(e p \rightarrow c \bar{c}X ) = (0.45 \pm 0.11~{+0.37}_{-0.22}) \, \mu {\rm b} $ at \mbox{$\sqrt{s} = 296$}\GeV\ and $\langle W \rangle = 198$ \GeV. The average $\gamma p$ charm cross section \mbox{$\sigma(\gamma p \rightarrow c \bar{c}X )$} is found to be \mbox{$(6.3 \pm 2.2~{+6.3}_{-3.0}) \, \mu {\rm b} $} at $\langle W \rangle = 163$ \GeV\ and \mbox{$(16.9 \pm 5.2~{+13.9}_{-8.5}) \, \mu {\rm b} $} at $\langle W \rangle = 243$ \GeV. The increase of the total charm photoproduction cross section by one order of magnitude with respect to low energy data experiments is well described by QCD NLO calculations using singular gluon distributions in the proton.
No description provided.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
The ratio of neutron and proton yields at quasifree kinematics was measured for the reactions 2H(e,e′n) and 2H(e,e′p) at momentum transfers Q2=0.125, 0.255, 0.417, and 0.605(GeV/c)2, detecting the neutron and the proton simultaneously in the same scintillator array. The neutron detection efficiency was measured in situ with the 1H(γ,π+)n reaction. From this the ratio R of 2H(e,e′n) and 2H(e,e′p) cross sections was determined and used to extract the neutron magnetic form factor GMn in a model insensitive approach, resulting in an inaccuracy between 2.1% and 3.3% in GMn.
Formfactor in nuclear magnetons.
We present a study of differential two jet ratios in multi-hadronic final states produced by e + e − annihilation in the AMY detector at TRISTAN. The data are compared to the predictions of the next-to-leading logarithm parton-shower (NLL PS) Monte Carlo and the O ( α s 2 ) matrix element QCD models. We determine the strong coupling strength α s (57.3 GeV) = 0.130 ± 0.006.
The data are compared to the predictions of Monte-Carlo.
Using the p-scheme for jet clustering.
Using the E-scheme for jet clustering.
We have used 19 pb**-1 of data collected with the Collider Detector at Fermilab to search for new particles decaying to dijets. We exclude at 95% confidence level models containing the following new particles: axigluons with mass between 200 and 870 GeV, excited quarks with mass between 80 and 570 GeV, and color octet technirhos with mass between 320 and 480 GeV.
Here UNSPEC refers to axigluons, excited quarks, colour octet technirhos, ngauge bosons (W' and Z') and diquarks (D and Dc). M is the mass of the new particle (axigluon, q*, ...). Measurements are given to the 95% confidence limit.