Inclusive π±, K± and\((p,\bar p)\) differential cross-sections in hadronic decays of the Z have been measured as a function ofz=Phadron/Pbeam, the scaled momentum. The results are based on approximately 520 000 events measured by the ALEPH detector at LEP during 1992. Charged particles are identified by their rate of ionization energy loss in the ALEPH Time Projection Chamber. The position, ξ*, of the peak in the ln(1/z) distribution is determined, and the evolution of the peak position with centre-of-mass energy is compared with the prediction of QCD.
No description provided.
No description provided.
No description provided.
We have studied the production of D*± mesons in a sample of 1.25 million multihadronic decays of the Z0, in which 1969 candidates have been identified. We have determined the total multiplicity of charged D* mesons in multihadronic Z0 decays to be
No description provided.
Multiplicity data uncorrected for decay branching ratios.
No description provided.
Using a silicon-microstrip detector array to identify secondary vertices, we have observed b→J/ψ→μ+μ− decays in 800GeV/c proton-gold interactions. The doubly differential cross section for J/ψ mesons originating from b-quark decays, assuming linear dependence on nucleon number, is d2σ/dxFdpT2=107±28±19[pb/(GeV/c)2]/nucleon at xF=0.05 and pT=1GeV/c. This measurement is compared to next-to-leading-order QCD predictions. The integrated b-quark production cross section, obtained by extrapolation over all xF and pT, is σ(pN→bb¯+X)=5.7±1.5±1.3 nb/nucleon.
All J/PSI(1S) are from B/BBAR decays. Cross section per nucleon was obtained with linear A-dependence.
Cross section per nucleon was obtained with linear A-dependence.
All J/PSI(1S) are from B/BBAR decays. Cross section per nucleon was obtained with linear A-dependence. Extrapolation in the XL=0.05 and PT=1 GEV bin.
Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2 . It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant α s as a free parameter. The measured value, α s ( M Z 2 ) = 0.123 ± 0.018, is in agreement both with determinations from e + e − annihilation at LEP using the same observable and with the world average.
Determination of ALP_S(MZ**2). Error contains both statistics and systematics.
We present the results of a search in p¯p collisions at s=1.8 TeV for the top quark decaying to a charged Higgs boson (H±). We search for dilepton final states from the decay chain tt¯→HH (or HW, or WW) + bb¯→ll+X. In a sample of 19.3 pb−1 collected during 1992-93 with the Collider Detector at Fermilab, we observe 2 events with a background estimation of 3.0 ± 1.0 events. Limits at 95% C.L. in the (Mtop,MH±) plane are presented. For the case Mtop<MW+Mb, we exclude at 95% C.L. the entire (Mtop,MH±) plane for the branching ratio B(H→τν) larger than 75%. We also interpret the results in terms of the parameter tan β of two-Higgs-doublet models.
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model parameter describing the charged Higgs decay (see text).
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.
The charge asymmetry has been measured using $19,039W$ decays recorded by the CDF detector during the 1992-93 run of the Tevatron Collider. The asymmetry is sensitive to the ratio of $d$ and $u$ quark distributions to $x<0.01$ at $Q~2 \approx M_W~2$, where nonperturbative effects are minimal. It is found that of the two current sets of parton distributions, those of Martin, Roberts and Stirling (MRS) are favored over the sets most recently produced by the CTEQ collaboration. The $W$ asymmetry data provide a stronger constraints on $d/u$ ratio than the recent measurements of $F_2~{\mu n}/F_2~{\mu p}$ which are limited by uncertainties originating from deutron corrections.
Charge asymmetry defined as (DSIG(Q=L+)/DYRAP - DSIG(Q=L-)/DYRAP)/ (DSIG(Q=L+)/DYRAP + DSIG(Q=L-)/DYRAP). Here LEPTON are E and MU.
Ψ′ and J/Ψ yields are compared in p-W, p-U and S-U interactions at 200 GeV/nucleon. Their ratio decreases from proton-t to sulphur-induced reactions. It also decreases in sulphur-induced reactions from peripheral to central collisions. This result could indicate that the Ψ′ and J/Ψ suppression mechanisms have different origins in p- and S-induced reactions.
No description provided.
No description provided.
No description provided.
We present the first measurement of the left-right asymmetry in Bhabha scattering with a polarized electron beam. The effective electron vector and axial vector couplings to the Z0 are extracted from a combined analysis of the polarized Bhabha scattering data and the left-right asymmetry previously published by this collaboration.
No description provided.
We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8<gW<3.1 for qWe=1 and −0.6<qWe<2.7 for gW=2 at 95% C.L.
E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper).