We have measured the multiplicities of pions produced in the collisions of π mesons with neon nuclei at bombarding momenta of 10.5 and 200 GeV/c. The diffractive production of pions is clearly separable. If one excludes the diffractive part, the pion multiplicity obeys the same Koba-Nielsen-Olesen scaling as found previously for π−−p collisions. This fact would seem to indicate the validity of an energy-flux or collective-variable description of the production process. A surprisingly large number of energetic protons (> 1 GeV/c lab momentum) are found to be produced in π-Ne collisions.
We report on a study of 15-GeV/c π+p interactions of all topologies using the SLAC 82-in. hydrogen bubble chamber. A description is given of the automatic pattern-recognition techniques used to measure the events. Cross sections are given for meson-resonance production in all topologies. Evidence is presented for a new resonance decaying to five pions. A measurement is made of the branching ratios of the g meson. A study is made of low-mass enhancements in the diffractively produced ρπ, fπ, and gπ channels, and a search is made for nondiffractive production of the A1 meson.
A search for the production of charmed particles in 15-BeV/c π+p interactions has been carried out. The search was sensitive to charmed particles in the 1.5 to 4.0 BeV mass range, with lifetimes ≲10−11 sec, decaying into a strange particle with up to eight additional pions. No evidence for the production of such particles was found.
We have studied muon-produced hadrons from a deuterium target. The structure functions and the charge ratios are reported for neutrons; the transverse momentum and azimuthal distributions are reported for deuterons. The structure function for the neutron is similar to that of the proton. The charge ratio of produced hadrons follows the expectation of a simple spin-½ quark model. Transverse-momentum results agree with those at lower energy and are similar to those from hadron-hadron interactions. No azimuthal anisotropy is seen.
Significant two-particle correlations of dynamical origin are observed in 200 GeV/c π−p inclusive interactions. This is demonstrated by comparison with kinematic correlations calculated from an independent-particle-emission model. Two distinct correlation types are observed: (a) unlike-particle correlations with correlation length ∼ 1.3 rapidity units independent of azimuthal separation, and (b) like-particle correlations with correlation length ∼ 0.4 rapidity units which are observed only for small azimuthal separations.
Inclusive cross sections for π 0 , K s 0 , Λ 0 and Λ 0 production in 100, 200 and 360 GeV /c π − p interactions are presented and compared with data at other energies. Invariant cross sections for γ, K s 0 , Λ 0 and Λ 0 production are presented in terms of Feynman x , the rapidity y , and transverse momentum squared, p T 2 . A comparison of the observed γ spectrum is made with the spectra computed assuming that the π 0 momentum distribution is identical to that of the observed π + or π − .
Inclusive and semi-inclusive cross sections for gp0 production in 100, 200, and 360 GeV/c π−p interactions are presented. Differential cross sections for ρ0 production as functions of c.m. rapidity and transverse momentum are compared with the corresponding differential cross sections for pion production. Effects of various methods of estimating background on the values obtained for ρ0 production cross sections are discussed. About 10% of the final-state charged pions appear to come from ρ0 decay. Thus, while ρ0 production and decay is a significant source of final-state pions, other sources must contribute the majority of the produced pions.
Studies have been made of the reactions π + p→p π + π + π − and π − p→p π + π − π − , both at an incident pion momentum of 18.5 GeV/ c . The two-body (primarily Δ ++ and ϱ o and three-body (low-mass A enhancement, A 3 , N ∗ (1400), and N ∗ (1700)) subsystems are discussed. Cross sections for all significant channels of the reactions are given.
Using new data from 100 GeV c π − interactions, we find the energy dependence of the invariant cross-section in the target fragmentation (central) region to be consistent with an A + Bs − 1 2 (C + Ds − 1 4 ) behavior. The leading particle peak near x = + 1 exhibits a width in x which becomes smaller with increasing energy and an integrated cross section which is approximately energy independent.
Inclusive cross sections and invariant single-particle distributions are presented for positive pions and protons produced in 8.05-GeV/c π−p and 18.5-GeV/c π±p inclusive reactions. Distributions in pT2 and in the longitudinal variables x, y (c.m.) and pl (lab) are shown. Comparisons are made with inclusive distributions for other particles produced in the same reactions.