Measurement of the diffractive structure function F2(D(4) ) at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 81-96, 1998.
Inspire Record 448663 DOI 10.17182/hepdata.44431

This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5<Q^2<20~\gevtwo$. In the kinematic range $4 \times 10^{-4} < \xpom < 0.03$ and $0.015<\beta<0.5$, the $\xpom$ dependence of $\ftwodfour$ is fitted with a form $\xpoma$, yielding $a= \ftwodfouraerr$. Upon integration over $t$, the structure function $\ftwod$ is determined in a kinematic range extending to higher $\xpom$ and lower $\beta$ compared to our previous analysis; the results are discussed within the framework of Regge theory.

4 data tables

The measured distribution of T, the squared momentum transfer to the virtual pluton.

Slope of the T distribution.

The structure function F2(NAME=D4).

More…

The Reaction pi- p --> omega N at Momenta from 20-GeV/c to 200-GeV/c

Dahl, O.I. ; Johnson, R.A. ; Kenney, R.W. ; et al.
Phys.Rev.Lett. 38 (1977) 54, 1977.
Inspire Record 110620 DOI 10.17182/hepdata.20987

The reaction π−p→ωn in the beam-momentum range from 20 to 200 GeV/c has been studied using data acquired at Fermilab. In this Letter, the integral and differential cross sections for this reaction are presented. The integral cross sections are considerably larger than those previously reported. The differential cross sections can be reproduced quite easily by Regge models. As predicted by such models, natural-parity exchange dominates production throughout this energy region.

3 data tables

D(SIG)/DT IS AVERAGE OVER T INTERVAL WITH NO FINITE-BIN-WIDTH CORRECTIONS.

No description provided.

REPRESENTATIVE SPIN DENSITY MATRIX ELEMENTS.


Pion Charge Exchange Scattering at High-Energies

Barnes, A.V. ; Mellema, D.J. ; Tollestrup, A.V. ; et al.
Phys.Rev.Lett. 37 (1976) 76, 1976.
Inspire Record 108646 DOI 10.17182/hepdata.21046

We report on a study of pion charge-exchange scattering carried out at Fermilab in the energy range 20 to 200 GeV. The results can be described remarkably well by a simple Regge-pole model. The charge-exchange cross sections in the forward direction lead to a prediction for the difference in total cross sections of π−p and π+p which is in satisfactory agreement with direct measurements of this difference in another experiment at Fermilab.

3 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).


The Reaction pi- p ---> eta n at High-Energies

Dahl, O.I. ; Johnson, R.A. ; Kenney, R.W. ; et al.
Phys.Rev.Lett. 37 (1976) 80, 1976.
Inspire Record 108647 DOI 10.17182/hepdata.21028

Measurements on the reaction π−p→ηn have been carried out at Fermilab with beam energies from 20 to 200 GeV in the same experiment in which pion charge-exchange scattering was studied. The differential cross sections have a pronounced dip in the forward direction. The data can be described well by a simple Regge-pole model but the resulting A2 trajectory is not degenerate with the ρ trajectory extracted from the charge-exchange data.

3 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).