Showing 10 of 147 results
A measurement is presented of the electroweak vector boson scattering production of ZV (V = W, Z) boson pairs associated with two jets in proton-proton collisions at a center-of-mass energy of 13 TeV. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected at the CERN LHC with the CMS detector during the 2016$-$2018 data-taking period. The analysis targets final states with a pair of isolated electrons or muons from Z boson decays and three or four jets, depending on the momentum of the vector boson that decays into quarks. Signal strength is measured for events characterized by a large invariant mass of two forward jets with a wide pseudorapidity gap between them. The electroweak production of ZV in association with two jets is measured with an observed (expected) significance of 1.3 (1.8) standard deviations. A combination of the analyses of ZV channel and the previously published WV channel in the lepton plus jets final state places constraints on effective field theory parameters that describe anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two jets. Several world best limits are set on anomalous quartic gauge couplings in terms of dimension-8 standard model effective field theory operators.
At hadron colliders, the net transverse momentum of particles that do not interact with the detector (missing transverse momentum, $\vec{p}_\mathrm{T}^\text{miss}$) is a crucial observable in many analyses. In the standard model, $\vec{p}_\mathrm{T}^\text{miss}$ originates from neutrinos. Many beyond-the-standard-model particles, such as dark matter candidates, are also expected to leave the experimental apparatus undetected. This paper presents a novel $\vec{p}_\mathrm{T}^\text{miss}$ estimator, DeepMET, which is based on deep neural networks that were developed by the CMS Collaboration at the LHC. The DeepMET algorithm produces a weight for each reconstructed particle based on its properties. The estimator is based on the negative vector sum of the weighted transverse momenta of all reconstructed particles in an event. Compared with other estimators currently employed by CMS, DeepMET improves the $\vec{p}_\mathrm{T}^\text{miss}$ resolution by 10$-$30%, shows improvement for a wide range of final states, is easier to train, and is more resilient against the effects of additional proton-proton interactions accompanying the collision of interest.
This paper presents a search for a Higgs boson produced in association with a charm quark (cH) which allows to probe the Higgs-charm Yukawa coupling strength modifier $κ_\mathrm{c}$. Higgs boson decays to a pair of W bosons are considered, where one W boson decays to an electron and a neutrino, and the other \PW boson decays to a muon and a neutrino. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected between 2016 and 2018 with the CMS detector at the LHC at a center-of-mass energy of $\sqrt{s}$ = 13 TeV. Upper limits at the 95% confidence level (CL) are set on the ratio of the measured yield to the standard model expectation for cH production. The observed (expected) upper limit is 1065 (506). When combined with the previous search for cH in the diphoton decay channel of the Higgs boson, the limits are interpreted as observed (expected) constraints at 95% CL on the value of $κ_\mathrm{c}$, $\lvertκ_\mathrm{c}\rvert$ $\lt$ 47 (51).
A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 550$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 600$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 650$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 700$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 750$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 850$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 900$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 800$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is $σ_\text{fid}$ = 74 $\pm$ 11 (stat) $^{+5}_{-4}$ (syst) fb, in agreement with the standard model prediction of 67.8 $\pm$ 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.
Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.
Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Comparison of the shapes extrapolated with a linear or quadratic extrapolation of the QCD contribution in the W+ signal region.
Comparison of the shapes extrapolated with a linear or quadratic extrapolation of the QCD contribution in the W- signal region.
Post-fit distributions of the transverse mass in the W+ signal region.
Post-fit distributions of the transverse mass in the W- signal region.
Post-fit distributions of the dimuon mass in the Z boson signal region.
Example plot for the extrapolation of the QCD contribution from a region with inverted relative isolation criterion to the W+ signal region in the transverse mass bin 12 < mT < 18 GeV. The values corresponding to the smallest relative muon isolation are extrapolated with a linear (smaller value) and quadratic (larger value) function.
Example plot for the extrapolation of the QCD contribution from a region with inverted relative isolation criterion to the W- signal region in the transverse mass bin 12 < mT < 18 GeV.The values corresponding to the smallest relative muon isolation are extrapolated with a linear (smaller value) and quadratic (larger value) function.
Example plot for the extrapolation of the QCD contribution from a region with inverted relative isolation criterion to the W+ signal region in the transverse mass bin 102 < mT < 108 GeV.The values corresponding to the smallest relative muon isolation are extrapolated with a linear (larger value) and quadratic (smaller value) function.
Example plot for the extrapolation of the QCD contribution from a region with inverted relative isolation criterion to the W- signal region in the transverse mass bin 102 < mT < 108 GeV.The values corresponding to the smallest relative muon isolation are extrapolated with a linear (smaller value) and quadratic (larger value) function.
The table compares theoretical and measured values of the product of the fiducial cross sections and branching fractions. The theoretical predictions are generated with DYTurbo in combination with three different PDF sets. All values are normalized to the corresponding measured value. The relative uncertainties on the measured values are given separately with and without the contribution from the luminosity uncertainty.
The table compares theoretical and measured values of the product of the total cross sections and branching fractions. The theoretical predictions are generated with DYTurbo in combination with three different PDF sets. All values are normalized to the corresponding measured value. The relative uncertainties on the measured values are given separately with and without the contribution from the luminosity uncertainty.
The table compares theoretical and measured ratios of the product of the fiducial cross sections and branching fractions. The theoretical predictions are generated with DYTurbo in combination with three different PDF sets. All values are normalized to the corresponding measured value.
The table compares theoretical and measured ratios of the product of the total cross sections and branching fractions. The theoretical predictions are generated with DYTurbo in combination with three different PDF sets. All values are normalized to the corresponding measured value.
Comparison of the measured and theoretical cross sections for Z, W+, W-, and W production at different center-of-mass energies. The theoretical predictions are generated with DYTurbo in combination with the NNPDF 3.1 PDF set.
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC, and correspond to an integrated luminosity of 36.7-126.9 fb$^{-1}$ depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125-1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models.
Signal efficiency as a function of the mass $m_\phi$ after triple b tag selection for 2017 SL (squares), 2017 FH (triangles), and 2018 FH (circles) channels.
Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2017 SL category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.
Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2017 FH category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.
Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2018 FH category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.
Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$, corresponding to the Run 2 combination. The vertical dashed line separates the mass range where only the 2017 SL category contributes on its left, from the region where also the 2017 FH and 2018 FH categories contribute on its right. The expected limits from the 2017 SL, 2017 FH, and 2018 FH datasets as well as from the previously published result based on the 2016 dataset are also shown as colored lines.
Interpretation in the $M_h^{125}$ scenario of the MSSM: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of the mass of the CP-odd boson, $m_{A}$. The higgsino mass parameter has been set to $\mu = +1$ TeV. The hashed area indicates the parameter region in which the mass of the lightest MSSM Higgs boson does not coincide with 125 GeV within a margin of 3 GeV.
Interpretation in the $M_h^{125}$ scenario of the MSSM: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of the mass of the CP-odd boson, $m_{A}$. The higgsino mass parameter has been set to $\mu = -1$ TeV. The hashed area indicates the parameter region in which the mass of the lightest MSSM Higgs boson does not coincide with 125 GeV within a margin of 3 GeV.
Interpretation in the $M_h^{125}$ scenario of the MSSM: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of the mass of the CP-odd boson, $m_{A}$. The higgsino mass parameter has been set to $\mu = -2$ TeV. The hashed area indicates the parameter region in which the mass of the lightest MSSM Higgs boson does not coincide with 125 GeV within a margin of 3 GeV.
Interpretation in the $M_h^{125}$ scenario of the MSSM: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of the mass of the CP-odd boson, $m_{A}$. The higgsino mass parameter has been set to $\mu = -3$ TeV. The hashed area indicates the parameter region in which the mass of the lightest MSSM Higgs boson does not coincide with 125 GeV within a margin of 3 GeV.
Interpretation in the $m_h^{mod+}$ scenario of the MSSM: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of the mass of the CP-odd boson, $m_{A}$. The hashed area indicates the parameter region in which the mass of the lightest MSSM Higgs boson does not coincide with 125 GeV within a margin of 3 GeV.
Interpretation in the hMSSM scenario of the MSSM: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of the mass of the CP-odd boson, $m_{A}$.
Interpretation in 2HDM scenarios: observed and expected upper limits at 95% CL on the parameter tan(beta) as a function of $m_{A}$ for cos(beta-alpha) = 0.1, for the 2HDM $\it Type-II$ scenario.
Interpretation in 2HDM scenarios: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of cos(beta-alpha) for masses of $m_{A} = m_{H} = 300$ GeV, for the 2HDM $\it Type-II$ scenario.
Interpretation in 2HDM scenarios: observed and expected upper limits at 95% CL on the parameter tan(beta) as a function of $m_{A}$ for cos(beta-alpha) = 0.1, for the 2HDM $\it Flipped$ scenario.
Interpretation in 2HDM scenarios: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of cos(beta-alpha) for masses of $m_{A} = m_{H} = 300$ GeV, for the 2HDM $\it Flipped$ scenario.
Interpretation in the 2HDM flipped scenario: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of cos(beta-alpha) for mass of $m_{A} = m_{H} = 140$ GeV.
Interpretation in the 2HDM flipped scenario: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of cos(beta-alpha) for mass of $m_{A} = m_{H} = 600$ GeV.
Interpretation in the 2HDM flipped scenario: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of cos(beta-alpha) for mass of $m_{A} = m_{H} = 900$ GeV.
Interpretation in the 2HDM flipped scenario: observed and expected upper limits at 95% CL on the parameter tan(beta) as functions of cos(beta-alpha) for mass of $m_{A} = m_{H} = 1200$ GeV.
Simulated signal shapes for three representative values of the Higgs boson mass $m_\phi$ in the 2017 SL channel.
Simulated signal shapes for three representative values of the Higgs boson mass $m_\phi$ in the 2017 FH channel.
Simulated signal shapes for three representative values of the Higgs boson mass $m_\phi$ in the 2018 FH channel.
Background-only fits to the M12 distribution in each fit range of the 2017 analysis in the SL category
Background-only fits to the M12 distribution in each fit range of the 2017 analysis in the SL category
Background-only fits to the M12 distribution in each fit range of the 2017 analysis in the SL category
Background-only fits to the M12 distribution in each fit range of the 2017 analysis in the FH category
Background-only fits to the M12 distribution in each fit range of the 2017 analysis in the FH category
Background-only fits to the M12 distribution in each fit range of the 2017 analysis in the FH category
Background-only fits to the M12 distribution in each fit range of the 2017 analysis in the FH category
Background-only fits to the M12 distribution in each fit range of the 2018 analysis in the FH category
Background-only fits to the M12 distribution in each fit range of the 2018 analysis in the FH category
Background-only fits to the M12 distribution in each fit range of the 2018 analysis in the FH category
Background-only fits to the M12 distribution in each fit range of the 2018 analysis in the FH category
The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4$\ell$, $\ell$ = e, $\mu$) final state at a center-of-mass energy $\sqrt{s}$ = 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H $\to$ ZZ $\to$ 4$\ell$ inclusive fiducial cross section is measured to be 2.89 $^{+0.53}_{-0.49}$ (stat) $^{+0.29}_{-0.21}$ (syst) fb, in agreement with the standard model expectation of 3.09 $^{+0.27}_{-0.24}$ fb.
Postfit reconstructed distribution of the 4-lepton invariant mass in the 70 < m4l < 350 GeV mass range.
Postfit reconstructed distribution of the 4-lepton invariant mass in the 105< m4l < 160 GeV mass range.
Measured inclusive fiducial H->ZZ->4l cross section in the various final states at 13.6 TeV.
Measured inclusive fiducial H->ZZ->4l cross section as a function of the center-of-mass energy.
Postfit reconstructed distributions of the Higgs boson transverse momentum.
Postfit reconstructed distributions of the Higgs boson rapidity.
Higgs fiducial cross section in bins of pT of the Higgs boson.
Higgs fiducial cross section in bins of absolute value of rapidity of the Higgs boson.
Correlation matrix of fit in different final states
Correlation matrix of fit in pT(4l) bins
Correlation matrix of fit in abs(y(4l)) bins
A search for a heavy pseudoscalar Higgs boson, A, decaying to a 125 GeV Higgs boson h and a Z boson is presented. The h boson is identified via its decay to a pair of tau leptons, while the Z boson is identified via its decay to a pair of electrons or muons. The search targets the production of the A boson via the gluon-gluon fusion process, gg $\to$ A, and in association with bottom quarks, $\mathrm{b\bar{b}}$A. The analysis uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the CERN LHC in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. Constraints are set on the product of the cross sections of the A production mechanisms and the A $\to$ Zh decay branching fraction. The observed (expected) upper limit at 95% confidence level ranges from 0.049 (0.060) pb to 1.02 (0.79) pb for the gg $\to$ A process and from 0.053 (0.059) pb to 0.79 (0.61) pb for the $\text{b}\bar{\text{b}}$A process in the probed range of the A boson mass, $m_\text{A}$, from 225 GeV to 1 TeV. The results of the search are used to constrain parameters within the ${\text{M}_{\text{h,EFT}}^{\text{125}}}$ benchmark scenario of the minimal supersymmetric extension of the standard model. Values of $\tanβ$ below 2.2 are excluded in this scenario at 95% confidence level for all $m_\text{A}$ values in the range from 225 to 350 GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.