Date

Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
JHEP 05 (2011) 126, 2011.
Inspire Record 894309 DOI 10.17182/hepdata.66147

Results of inclusive measurements of inelastic electron and positron scattering from unpolarized protons and deuterons at the HERMES experiment are presented. The structure functions $F_2^p$ and $F_2^d$ are determined using a parameterization of existing data for the longitudinal-to-transverse virtual-photon absorption cross-section ratio. The HERMES results provide data in the ranges $0.006\leq x\leq 0.9$ and 0.1 GeV$^2\leq Q^2\leq$ 20 GeV$^2$, covering the transition region between the perturbative and the non-perturbative regimes of QCD in a so-far largely unexplored kinematic region. They are in agreement with existing world data in the region of overlap. The measured cross sections are used, in combination with data from other experiments, to perform fits to the photon-nucleon cross section using the functional form of the ALLM model. The deuteron-to-proton cross-section ratio is also determined.

3 data tables

Results on the differential Born cross section $\frac{d^2\sigma^p}{dx\,dQ^2}$ and $F_2^p$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies) are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle {Q^2} \rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.6 %. The structure function $F_2^p$ is derived using the parameterization $R=R_{1998}$.

Results on the differential Born cross section $\frac{d^2\sigma^d}{dx\,dQ^2}$ and $F_2^d$. The statistical uncertainty $\delta_{stat.}$ and the systematic uncertainties $\delta_{PID}$ (particle identification), $\delta_{model}$ (model dependence outside the acceptance), $\delta_{mis.}$ (misalignment), and $\delta_{rad.}$ (Bethe-Heitler efficiencies), are given in percent. Corresponding $x$ bin numbers and $Q^2$ bin numbers and the average values $\langle x \rangle$ and $\langle{Q^2}\rangle$ are listed in the first four columns. The overall normalization uncertainty is 7.5 %. The structure function $F_2^d$ is derived using the parameterization $R=R_{1998}$.

Results on the inelastic Born cross-section ratio ${\sigma^d}/{\sigma^p}$. The statistical uncertainty $\delta_{stat.}$, the systematic uncertainty $\delta_{rad.}$ due to radiative corrections and $\delta_{model}$ due to the model dependence outside the acceptance are given in percent. The average values of $x$ and $Q^2$ are listed in the first two columns. The overall normalization uncertainty is 1.4$\%$.


Study of Dimuon Production in Photon-Photon Collisions and Measurement of QED Photon Structure Functions at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 19 (2001) 15-28, 2001.
Inspire Record 539642 DOI 10.17182/hepdata.49854

Muon pair production in the process e+e- -> e+e-mu+mu- is studied using the data taken at LEP1 (sqrt(s) \simeq m_Z) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb^{-1}. The QED predictions have been tested over the whole Q^2 range accessible at LEP1 (from several GeV^2/c^4 to several hundred GeV^2/c^4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function F_2^\gamma. Azimuthal correlations are used to obtain information on additional structure functions, F_A^\gamma and F_B^\gamma, which originate from interference terms of the scattering amplitudes. The measured ratios F_A^\gamma/F_2^\gamma and F_B^\gamma/F_2^\gamma are significantly different from zero and consistent with QED predictions.

3 data tables

The measured QED photon structure function at Q**2 = 12.5 GeV for the combine SAT and STIC data.

The measured QED photon structure function at Q**2 = 120 GeV for the combine SAT and STIC data.

Ratio of the structure functions FA and FB to F2.


The A dependence of the nuclear structure function ratios

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badee̵k, B. ; et al.
Nucl.Phys.B 481 (1996) 3-22, 1996.
Inspire Record 429851 DOI 10.17182/hepdata.32712

Results are presented for six nuclei from Be to Pb on the structure function ratios F 2 A / F 2 C ( x ) and their A dependence in deep inelastic muon scattering at 200 GeV incident muon energy. The data cover the kinematic range 0.01 < x < 0.8 with Q 2 ranging from 2 to 70 GeV 2 . The A dependence of nuclear structure function ratios is parametrised and compared to various models.

6 data tables

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.003 in the ratio.

More…

The Q**2 dependence of the structure function ratio F2 Sn / F2 C and the difference R Sn - R C in deep inelastic muon scattering

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badee̵k, B. ; et al.
Nucl.Phys.B 481 (1996) 23-39, 1996.
Inspire Record 429850 DOI 10.17182/hepdata.32717

The Q 2 dependence of the structure function ratio F 2 Sn / F 2 C for 0.01 < x < 0.75 and 1 < Q 2 < 140 GeV 2 is reported. For x < 0.1 the size of shadowing decreases with ln Q 2 and the maximum rate is about 0.04 at x = 0.01. The rate decreases with x and is compatible with zero for x ⩾ 0.1. The difference R Sn − R C , where R is the ratio of longitudinally to transversely polarised virtual photon absorption cross sections, is also given. No dependence on x is seen and the average value is 0.040 ± 0.021 (stat.) ± 0.026 (syst.) at a mean Q 2 of 10 GeV 2 .

17 data tables

Additional normalisation error in the ratio of 0.002.

Additional normalisation error in the ratio of 0.002.

Additional normalisation error in the ratio of 0.002.

More…

Accurate measurement of F2(d)/F2(p) and R(d)-R(p).

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 487 (1997) 3-26, 1997.
Inspire Record 426595 DOI 10.17182/hepdata.32750

Results are presented for F2d/F2p and Rd-Rp from simultaneous measurements of deep inelastic muon scattering on hydrogen and deuterium targets, at 90, 120, 200 and 280 GeV. The difference Rd-Rp, determined in the range 0.002<x<0.4 at an average Q^2 of 5 GeV^2, is compatible with zero. The x and Q^2 dependence of F2d/F2p was measured in the kinematic range 0.001<x<0.8 and 0.1<Q^2<145 GeV^2 with small statistical and systematic errors. For x>0.1 the ratio decreases with Q^2.

23 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton and deuteron structure functions, F2(p) and F2(d), and of the ratio sigma(L)/sigma(T).

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 483 (1997) 3-43, 1997.
Inspire Record 424154 DOI 10.17182/hepdata.32752

The muon-proton and muon-deuteron inclusive deep inelastic scattering cross sections were measured in the kinematic range 0.002 < x < 0.60 and 0.5 < Q2 < 75 GeV2 at incident muon energies of 90, 120, 200 and 280 GeV. These results are based on the full data set collected by the New Muon Collaboration, including the data taken with a small angle trigger. The extracted values of the structure functions F2p and F2d are in good agreement with those from other experiments. The data cover a sufficient range of y to allow the determination of the ratio of the longitudinally to transversely polarised virtual photon absorption cross sections, R= sigma(L)/sigma(T), for 0.002 < x < 0.12 . The values of R are compatible with a perturbative QCD prediction; they agree with earlier measurements and extend to smaller x.

33 data tables

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

More…

Measurement of the proton and the deuteron structure functions, F2(p) and F2(d)

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Phys.Lett.B 364 (1995) 107-115, 1995.
Inspire Record 400018 DOI 10.17182/hepdata.48061

The proton and deuteron structure functions F2p and F2d were measured in the kinematic range 0.006<x<0.6 and 0.5<Q~2<75 GeV~2, by inclusive deep inelastic muon scattering at 90, 120, 200 and 280 GeV. The measurements are in good agreement with earlier high precision results. The present and earlier results together have been parametrised to give descriptions of the proton and deuteron structure functions F2 and their uncertainties over the range 0.006<x<0.9.

30 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of the photon structure function F2(gamma) at an average Q**2 of 12-GeV**2/c**4

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1996) 223-234, 1996.
Inspire Record 396884 DOI 10.17182/hepdata.47867

None

2 data tables

No description provided.

Low x domain.


The Structure Function ratios F2(li) / F2(D) and F2(C) / F2(D) at small x

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 441 (1995) 12-30, 1995.
Inspire Record 394050 DOI 10.17182/hepdata.47955

We present the structure function ratios F2(Li)/F2(D) and F2(C)/F2(D) measured in deep inelastic muon-nucleus scattering at a nominal incident muon energy of 200 GeV. The kinematic range 0.0001 < x < 0.7 and 0.01< Q~2 < 70 GeV~2 is covered. For values of $x$ less than $0.002$ both ratios indicate saturation of shadowing at values compatible with photoabsorption results.

2 data tables

Additional normalization error of 0.004 not included.

Data on F2(C)/F2(DEUT) merged with previous NMC data from Amaudruz et al. 1995, NP B441,3. (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+3106> RED = 3106 </a>). Additional normalization error of 0.004 not included.


A Re-Evaluation of the nuclear Structure Function Ratios for D, He, Li, C and Ca

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Nucl.Phys.B 441 (1995) 3-11, 1995.
Inspire Record 393377 DOI 10.17182/hepdata.32848

We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.

6 data tables

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

More…