Total and differential cross sections for the dp --> 3He eta reaction have been measured near threshold for 3He center-of-mass momenta in the range from 17.1 MeV/c to 87.5 MeV/c. The data were taken during a slow ramping of the COSY internal deuteron beam scattered on a proton target detecting the 3He ejectiles with the COSY-11 facility. The forward-backward asymmetries of the differential cross sections deviate clearly from zero for center-of-mass momenta above 50 MeV/c indicating the presence of higher partial waves in the final state. Below 50 MeV/c center-of-mass momenta a fit of the final state enhancement factor to the data of the total cross sections results in the 3He eta scattering length of a = |2.9 +/- 0.6| + i (3.2 +/- 0.4) fm.
Forward-Backward asymmetry for the reaction DEUT P --> HE3 ETA.
The differential and total cross sections for the d+p->3He+eta reaction have been measured in a high precision high statistics COSY-ANKE experiment near threshold using a continuous beam energy ramp up to an excess energy Q of 11.3 MeV with essentially 100% acceptance. The kinematics allowed the mean value of Q to be determined to about 9 keV. Evidence is found for the effects of higher partial waves for Q>4 MeV. The very rapid rise of the total cross section to its maximum value within 0.5 MeV of threshold implies a very large eta-3He scattering length and hence the presence of a quasi-bound state extremely close to threshold.
Angular distribution asymmetry parameter defined as:. SIG(TOTAL)*(1+ASYM*COS(THETA(CM))/4*PI.
We measure forward cross sections for production of D+, D0, Ds, D*+, and Λc in collisions of π±, K±, and p on a nuclear target. Production induced by different beam particles is found to be the same within statistics. Strange and baryonic final states are seen to contribute appreciably to the total charm cross section, which our measurements indicate is larger than but consistent with QCD predictions. The energy dependence mapped out by these and previous measurements is consistent with theory. Leading-particle asymmetry measurements for K and p-induced charm production are also presented.
Leading particle asymmetries defined as (SIG(LEADING)- SIG(NONLEADING))/(SIG(LEADING)+SIG(NONLEADING)).
We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.
Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.