Date

Multi-particle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 99 (2019) 024903, 2019.
Inspire Record 1670164 DOI 10.17182/hepdata.150019

We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity $1<|\eta|<3$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients $v_2\{2\}$, $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$, and triangular flow coefficients $v_3\{2\}$ and $v_3\{4\}$. Using the small-variance limit, we estimate the mean and variance of the event-by-event $v_2$ distribution from $v_2\{2\}$ and $v_2\{4\}$. In a complementary analysis, we also use a folding procedure to study the distributions of $v_2$ and $v_3$ directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final state momentum distributions are discussed.

21 data tables

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

Centrality dependence of (a) $v_2${2} and (b) $v_2${4}. (a) The red points indicate no pseudorapidity gap whereas the magenta points indicate a pseudorapidity gap of |$\Delta\eta$| > 2.0. (b) The black points indicate $v_2${4} with no pseudorapidity gap, the blue points indicate a two-subevent method with |$\Delta\eta$| > 2.0 but where some short-range pairs are allowed, and the red points indicate a two-subevent method with |$\Delta\eta$| > 2.0 where no short-range pairs are allowed.

More…

Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 082301, 2018.
Inspire Record 1670168 DOI 10.17182/hepdata.83911

The elliptic azimuthal anisotropy coefficient ($v_2$) is measured for charm (D$^0$) and strange (K$_\mathrm{S}^0$, $\Lambda$, $\Xi^-$, and $\Omega^-$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV. A significant positive $v_2$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $v_2$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV, also presented.

24 data tables

The elliptic flow, $v_{2}$, for $K^{0}_{S}$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow, $v_{2}$, for $\Lambda$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow, $v_{2}$, for $\Xi^{-}$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

More…

$\phi$ meson production at forward rapidity in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=2.76$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 559, 2018.
Inspire Record 1669805 DOI 10.17182/hepdata.83778

$\phi$ meson measurements provide insight into strangeness production, which is one of the key observables for the hot medium formed in high-energy heavy-ion collisions. ALICE measured $\phi$ production through its decay in muon pairs in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 2.76 TeV in the intermediate transverse momentum range $2 < p_{\rm T} < 5$ GeV/$c$ and in the rapidity interval $2.5<y<4$. The $\phi$ yield was measured as a function of the transverse momentum and collision centrality. The nuclear modification factor was obtained as a function of the average number of participating nucleons. Results were compared with the ones obtained via the kaon decay channel in the same $p_{\rm T}$ range at midrapidity. The values of the nuclear modification factor in the two rapidity regions are in agreement within uncertainties.

5 data tables

phi yield as a function of $p_\mathrm{T}$ at forward rapidity in pp collisions.

phi yield as a function of $p_\mathrm{T}$ at forward rapidity in Pb-Pb collisions for 0-40\% centrality.

phi yield as a function of $p_\mathrm{T}$ at forward rapidity in Pb-Pb collisions for 40-90\% centrality (scaled by 3 in the figure).

More…

Measurement of D$^0$, D$^+$, D$^{*+}$ and D$^+_{\rm s}$ production in Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}}= 5.02$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 10 (2018) 174, 2018.
Inspire Record 1669819 DOI 10.17182/hepdata.88168

We report measurements of the production of prompt D$^0$, D$^+$, D$^{*+}$ and D$^+_{\rm s}$ mesons in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV, in the centrality classes 0-10%, 30-50% and 60-80%. The D-meson production yields are measured at mid-rapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\rm T}$). The $p_{\rm T}$ intervals covered in central collisions are: $1<p_{\rm T}<50$ Gev/$c$ for D$^0$, $2<p_{\rm T}<50$ GeV/$c$ for D$^+$, $3<p_{\rm T}<50$ GeV/$c$ for D$^{*+}$, and $4<p_{\rm T}<16$ GeV/$c$ for D$^+_{\rm s}$ mesons. The nuclear modification factors ($R_{\rm AA}$) for non-strange D mesons (D$^0$, D$^+$, D$^{*+}$) show minimum values of about 0.2 for $p_{\rm T}$ = 6-10 GeV/$c$ in the most central collisions and are compatible within uncertainties with those measured at $\sqrt{s_{\rm NN}}=2.76$ TeV. For D$^+_{\rm s}$ mesons, the values of $R_{\rm AA}$ are larger than those of non-strange D mesons, but compatible within uncertainties. In central collisions the average $R_{\rm AA}$ of non-strange D mesons is compatible with that of charged particles for $p_{\rm T} > 8$ GeV/$c$, while it is larger at lower $p_{\rm T}$. The nuclear modification factors for strange and non-strange D mesons are also compared to theoretical models with different implementations of in-medium energy loss.

43 data tables

pT-differential yield of prompt D0 mesons in Pb-Pb collisions at sqrt{sNN}=5.02 TeV in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0393.

pT-differential yield of prompt D+ mesons in Pb-Pb collisions at sqrt{sNN}=5.02 TeV in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of D+->Kpipi : 0.0946.

pT-differential yield of prompt D*+ mesons in Pb-Pb collisions at sqrt{sNN}=5.02 TeV in the centrality class 0-10% in the rapidity interval |y|<0.5. Branching ratio of D*+->D0pi->Kpipi : 0.0393*0.677.

More…

Measurement of $\Upsilon$ production in $pp$ collisions at $\sqrt{s}$= 13 TeV

The LHCb collaboration Aaij, R. ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 07 (2018) 134, 2018.
Inspire Record 1670013 DOI 10.17182/hepdata.82210

The production cross-sections of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ mesons in proton-proton collisions at $\sqrt{s}$= 13 TeV are measured with a data sample corresponding to an integrated luminosity of $277 \pm 11$ $\rm pb^{-1}$ recorded by the LHCb experiment in 2015. The $\Upsilon$ mesons are reconstructed in the decay mode $\Upsilon\to\mu^{+}\mu^{-}$. The differential production cross-sections times the dimuon branching fractions are measured as a function of the $\Upsilon$ transverse momentum, $p_{\rm T}$, and rapidity, $y$, over the range $0 < p_{\rm T}< 30$ GeV/c and $2.0 < y < 4.5$. The ratios of the cross-sections with respect to the LHCb measurement at $\sqrt{s}$= 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.

14 data tables

Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(1S) (in pb). The first uncertainty is statistical and the second is systematic.

Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(2S) (in pb). The first uncertainty is statistical and the second is systematic.

Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(3S) (in pb). The first uncertainty is statistical and the second is systematic.

More…

Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 784 (2018) 26-32, 2018.
Inspire Record 1669807 DOI 10.17182/hepdata.100168

New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

5 data tables

$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.

Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.

(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).

More…

Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2018) 016, 2018.
Inspire Record 1669245 DOI 10.17182/hepdata.84707

A search is presented for long-lived charged particles that decay within the CMS detector and produce the signature of a disappearing track. A disappearing track is an isolated track with missing hits in the outer layers of the silicon tracker, little or no energy in associated calorimeter deposits, and no associated hits in the muon detectors. This search uses data collected with the CMS detector in 2015 and 2016 from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 38.4 fb$^{-1}$. The results of the search are interpreted in the context of the anomaly-mediated supersymmetry breaking model. The data are consistent with the background-only hypothesis. Limits are set on the product of the cross section for direct production of charginos and their branching fraction to a neutralino and a pion, as a function of the chargino mass and lifetime. At 95% confidence level, charginos with masses below 715 (695) GeV are excluded for a lifetime of 3 (7) ns, as are charginos with lifetimes from 0.5 to 60 ns for a mass of 505 GeV. These are the most stringent limits using a disappearing track signature on this signal model for chargino lifetimes above $\approx$ 0.7 ns.

14 data tables

The expected and observed 95% CL upper limits on the product of the cross section for direct production of charginos and their branching fraction to $\widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ as a function of chargino mass for a chargino lifetime of 0.3 ns. The ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$, is fixed to 5 with $\mu > 0$, where $\mu$ is the higgsino mass parameter. The direct chargino production cross section includes both $\widetilde{\chi}^{0}_{1}\widetilde{\chi}^\pm_{1}$ and $\widetilde{\chi}^\pm_{1}\widetilde{\chi}^\mp_{1}$ production in roughly a 2:1 ratio for all chargino masses considered, and the branching fraction of $\widetilde{\chi}^\pm_{1} \rightarrow \widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ is set to 100%. The theoretical prediction for the AMSB model is also shown.

The expected and observed 95% CL upper limits on the product of the cross section for direct production of charginos and their branching fraction to $\widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ as a function of chargino mass for a chargino lifetime of 3.3 ns. The ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$, is fixed to 5 with $\mu > 0$, where $\mu$ is the higgsino mass parameter. The direct chargino production cross section includes both $\widetilde{\chi}^{0}_{1}\widetilde{\chi}^\pm_{1}$ and $\widetilde{\chi}^\pm_{1}\widetilde{\chi}^\mp_{1}$ production in roughly a 2:1 ratio for all chargino masses considered, and the branching fraction of $\widetilde{\chi}^\pm_{1} \rightarrow \widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ is set to 100%. The theoretical prediction for the AMSB model is also shown.

The expected and observed 95% CL upper limits on the product of the cross section for direct production of charginos and their branching fraction to $\widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ as a function of chargino mass for a chargino lifetime of 33 ns. The ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$, is fixed to 5 with $\mu > 0$, where $\mu$ is the higgsino mass parameter. The direct chargino production cross section includes both $\widetilde{\chi}^{0}_{1}\widetilde{\chi}^\pm_{1}$ and $\widetilde{\chi}^\pm_{1}\widetilde{\chi}^\mp_{1}$ production in roughly a 2:1 ratio for all chargino masses considered, and the branching fraction of $\widetilde{\chi}^\pm_{1} \rightarrow \widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ is set to 100%. The theoretical prediction for the AMSB model is also shown.

More…

Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 030, 2019.
Inspire Record 1668124 DOI 10.17182/hepdata.82599

A search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is carried out with up to 36.1 $\mathrm{fb}^{-1}$ of LHC proton--proton collision data collected at $\sqrt{s}$ = 13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260--3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to $b\bar{b}b\bar{b}$ are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.

4 data tables

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the narrow-width scalar.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 1$.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 2$.

More…

Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 965, 2018.
Inspire Record 1667854 DOI 10.17182/hepdata.91404

The production of a Z boson, decaying to two charged leptons, in association with jets in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19 fb$^{-1}$. The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes one-loop corrections. The third is a fixed-order calculation with next-to-next-to-leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next-to-next-to-leading order calculation with next-to-next-to-leading logarithm resummation and parton showering.

36 data tables

Measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section for Z+jets as a function of inclusive jet multiplicity, $N_{\text{jets}}^{\text{min}}$, and breakdown of the relative uncertainty.

More…

Cross section and longitudinal single-spin asymmetry $A_L$ for forward $W^{\pm}\rightarrow\mu^{\pm}\nu$ production in polarized $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 98 (2018) 032007, 2018.
Inspire Record 1667398 DOI 10.17182/hepdata.141628

We have measured the cross section and single spin asymmetries from forward $W^{\pm}\rightarrow\mu^{\pm}\nu$ production in longitudinally polarized $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV using the PHENIX detector at the Relativistic Heavy Ion Collider. The cross sections are consistent with previous measurements at this collision energy, while the most forward and backward longitudinal single spin asymmetries provide new insights into the sea quark helicities in the proton. The charge of the W bosons provides a natural flavor separation of the participating partons.

2 data tables

Single-spin asymmetries at forward $A^{FW}_L$ and backward $A^{BW}_L$ rapidities for $p$+$p$ collisions at $\sqrt{s}$ = 510 GeV for results in 2013 and 2012, plus combined results for both years.

The total $W$ boson production cross sections for $p$+$p$ collisions at $\sqrt{s}$ = 510 GeV for $\sigma$($W^+$ $\rightarrow$ $\mu^+$) and $\sigma$($W^-$ $\rightarrow$ $\mu^-$).