Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.
The multiplicity moment MULT as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.
The multiplicity moment DISPERSION as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.
The multiplicity moment R2 as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.
An analysis is presented of the rapidity and transverse momentum distributions and of the nuclear stopping power in collisions ofπ+ andK+ mesons with Al and Au nuclei at 250 GeV/c. The experimental results are compared to predictions of the additive quark model and the dual parton model. The AQM offers an overall consistent description of the data in this experiment. The DPM reproduces reasonably well the rapidity spectra in the central and projectile fragmentation regions, but fails to describe the nuclear stopping power.
No description provided.
Excluding protons of PLAB < 1.2 GeV.
No description provided.
The interaction of 800-GeV protons in nuclear emulsion has been investigated. The multiplicities and angular distributions of charged particles emitted by both the projectile and the target nucleus have been measured for 1718 inelastic events and are compared with the data obtained in proton-emulsion collisions at 67, 200, and 400 GeV. The target excitation is found to be independent of energy while the production of secondary particles continues to increase with incident proton energy.
No description provided.
No description provided.
No description provided.
Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.
No description provided.
No description provided.
No description provided.