Date

Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

41 data tables

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abat, E. ; Abbott, B. ; et al.
Phys.Lett.B 688 (2010) 21-42, 2010.
Inspire Record 849050 DOI 10.17182/hepdata.54850

The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

5 data tables

Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.

Charged particle multiplicity as a function of pseudorapidity.

Charged particle multiplicity as a function of transverse momentum.

More…

Charged Particle Production in High Q2 Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Aktas, A. ; Alexa, C. ; et al.
Phys.Lett.B 654 (2007) 148-159, 2007.
Inspire Record 753349 DOI 10.17182/hepdata.45525

The average charged track multiplicity and the normalised distribution of the scaled momentum, $\xp$, of charged final state hadrons are measured in deep-inelastic $\ep$ scattering at high $Q^2$ in the Breit frame of reference. The analysis covers the range of photon virtuality $100 &lt; Q^2 &lt; 20 000 \GeV^{2}$. Compared with previous results presented by HERA experiments this analysis has a significantly higher statistical precision and extends the phase space to higher $Q^{2}$ and to the full range of $\xp$. The results are compared with $e^+e^-$ annihilation data and with various calculations based on perturbative QCD using different models of the hadronisation process.

11 data tables

Average values of Q and X (plus errors) for the different Q**2 ranges.

Average charged hadron multiplicity as a function of Q**2.

Normalised distribution of the scaled momentum as a function of Q**2 in the X range 0 to 0.02.

More…

Measurement of elastic electroproduction of Phi mesons at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 483 (2000) 360-372, 2000.
Inspire Record 526887 DOI 10.17182/hepdata.47016

The elastic electroproduction of phi mesons is studied at HERA with the H1 detector for photon virtualities 1 < Q^2 < 15 GeV^2 and hadronic centre of mass energies 40 < W < 130 GeV. The Q^2 and t dependences of the cross section are extracted (t being the square of the four-momentum transfer to the target proton). When plotted as function of (Q^2 + M_V^2) and scaled by the appropriate SU(5) quark charge factor, the phi meson cross section agrees within errors with the cross sections of the vector mesons V = rho, omega and J/psi. A detailed analysis is performed of the phi meson polarisation state and the ratio of the production cross sections for longitudinally and transversely polarised phi mesons is determined. A small but significant violation of s-channel helicity conservation (SCHC) is observed.

7 data tables

The measured ratio of PHI to RHO0 production.

The cross section for elastic PHI meson electro-production calculated by multiplying the PHI/RHO0 cross section ratio by the RHO0 cross section accurately measured in the earlier H1 publication (EPJ C13,371).

The corrected T distribution of elastic PHI meson production for W around 75 GeV and Q2 in the range 2.5 to 15 GeV**2 (mean = 4.8 GeV**2). Statistical error only.

More…

Investigation of power corrections to event shape variables measured in deep-inelastic scattering.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 14 (2000) 255-269, 2000.
Inspire Record 512347 DOI 10.17182/hepdata.43865

Deep-inelastic ep scattering data, taken with the H1 detector at HERA, are used to study the event shape variables thrust, jet broadening, jet mass, C parameter and two kinds of differential two-jet rate. The data cover a large range of the four-momentum transfer Q, which is considered to be the relevant energy scale, between 7 GeV and 100 GeV. The Q dependences of the mean values are compared with second order calculations of perturbative QCD applying power law corrections proportional to 1/Q^p to account for hadronization effects. The concept of power corrections is investigated by fitting simultaneously a non-perturbative parameter alpha_p and the strong coupling constant alpha_s.

63 data tables

Corrected mean values of the (1-THRUST) distribution (w.r.t.current hemisphere axis) as a function of Q.

Corrected mean values of the Jet Broadenning (B) distribution (w.r.t.current hemisphere axis) as a function of Q.

Corrected mean values of the (1-THRUST) distribution (w.r.t.max long. momentum axis) as a function of Q.

More…

Charmonium production in deep inelastic scattering at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 10 (1999) 373-393, 1999.
Inspire Record 496430 DOI 10.17182/hepdata.44039

The electroproduction of J/psi and psi(2S) mesons is studied in elastic, quasi-elastic and inclusive reactions for four momentum transfers 2 < Q^2 < 80 GeV^2 and photon-proton centre of mass energies 25 < W < 180 GeV. The data were taken with the H1 detector at the electron proton collider HERA in the years 1995 to 1997. The total virtual photon-proton cross section for elastic J/psi production is measured as a function of Q^2 and W. The dependence of the production rates on the square of the momentum transfer from the proton (t) is extracted. Decay angular distributions are analysed and the ratio of the longitudinal and transverse cross sections is derived. The ratio of the cross sections for quasi-elastic psi(2S) and J/psi meson production is measured as a function of Q^2. The results are discussed in terms of theoretical models based upon perturbative QCD. Differential cross sections for inclusive and inelastic production of J/psi mesons are determined and predictions within two theoretical frameworks are compared with the data, the non-relativistic QCD factorization approach including colour octet and colour singlet contributions, and the model of Soft Colour Interactions.

17 data tables

Cross section for elastic J/PSI photoproduction in W bins.

Cross section for elastic J/PSI photoproduction in W bins.

Cross section for elastic J/PSI photoproduction in W bins.

More…

Elastic electroproduction of rho mesons at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 13 (2000) 371-396, 2000.
Inspire Record 495311 DOI 10.17182/hepdata.44043

The elastic electroproduction of rho mesons is studied at HERA with the H1 detector for a photon virtuality in the range 1 < Q^2 < 60 GeV^2 and for a hadronic centre of mass energy in the range 30 < W < 140 GeV. The shape of the pipi mass distribution in the rho resonance region is measured as a function of Q^2. The full set of rho spin density matrix elements is determined, and evidence is found for a helicity flip amplitude at the level of 8 +- 3 % of the non-flip amplitudes. Measurements are presented of the dependence of the cross section on Q^2, W and t (the four-momentum transfer squared to the proton). They suggest that, especially at large Q^2, the gamma^*p cross section develops a stronger W dependence than that expected from the behaviour of elastic and total hadron-hadron cross sections.

15 data tables

Average values of the spin density matrix elements measured for the 1996 data sample.

Spin density matrix elements measured for 3 Q**2 values for the 1996 data sample.

Spin density matrix elements measured for 3 W values for the 1996 data sample.

More…

Differential (2+1) jet event rates and determination of alpha(s) in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 5 (1998) 625-639, 1998.
Inspire Record 472304 DOI 10.17182/hepdata.44249

Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.

4 data tables

Y2 distribution corrected for detector effects.

Y2 distribution corrected for both detector and hadronization effects.

Y2 distribution using the E, E0 and P variants of the JADE alogrithm, corrected for both detector and hadronization effects. Statistical errors only.

More…

Multiplicity structure of the hadronic final state in diffractive deep-inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 5 (1998) 439-452, 1998.
Inspire Record 469495 DOI 10.17182/hepdata.44363

The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.

10 data tables

The multiplicity moment MULT as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

The multiplicity moment DISPERSION as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

The multiplicity moment R2 as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

More…