The production of $J/\psi$ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of $37.5 pb^{-1}$ collected with the LHCb detector. The production cross-section for pairs with both \jpsi in the rapidity range $2<y^{J/\psi}<4.5$ and transverse momentum $p_{T}^{J/\psi}<10 GeV/c$ is $$ \sigma^{J/\psi J/\psi} = 5.1\pm1.0\pm1.1 nb,$$ where the first uncertainty is statistical and the second systematic.
Total production cross section for J/PSI pairs.
Differential production cross section for J/PSI pairs as a function of the invariant mass of the J/PSI-J/PSI system. Data read from plot with statistical errors only.
We present a measurement of direct photon pair production cross sections using 4.2 fb-1 of data collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators.
Single differential cross section DSIG/DM.
Single differential cross section DSIG/DPT.
Single differential cross section DSIG/DPHI.
Results are presented from analyses of jet data produced in pbarp collisions at sqrt{s} = 630 and 1800 GeV collected with the DO detector during the 1994-95 Fermilab Tevatron Collider run. We discuss details of detector calibration, and jet selection criteria in measurements of various jet production cross sections at sqrt{s} = 630 and 1800 GeV. The inclusive jet cross sections, the dijet mass spectrum, the dijet angular distributions, and the ratio of inclusive jet cross sections at sqrt{s} = 630 and 1800 GeV are compared to next-to-leading-order QCD predictions. The order alpha_s^3 calculations are in good agreement with the data. We also use the data at sqrt{s} = 1800 GeV to rule out models of quark compositeness with a contact interaction scale less than 2.2 TeV at the 95% confidence level.
The inclusive single jet cross section as a function of ET for ABS(ETARAP) < 0.5 at c.m. energy 1800 GeV.
The inclusive single jet cross section as a function of ET for ABS(ETARAP) 0.1 to 0.7 at c.m. energy 1800 GeV.
The inclusive single jet cross section as a function of ET and XT for ABS(ETARAP) < 0.5 at c.m. energy 630 GeV.
None
No description provided.
No description provided.
No description provided.
Results are presented on total and semiinclusive cross sections, longitudinal and transverse momentum distributions of the tensor mesonsK*+(1430),K*0(1430), andf(1270) observed inK+p interactions at 32 GeV/c. The data are compared withK*+(892).K*0(896) and ϱ0 vector meson production in the same experiment. The shapes of inclusive invariantx-spectra for the strange vector and tensor mesons are found to be rather similar, after removal of diffractive and quasi-two-body channels, in agreement with quark-recombination ideas.
MULT FOR THE TENSOR MESONS CALCULATED AS MULT=SIG(RES)/SIG(N<=8), WHERE SIG(N<=8) IS THE SUM OF TOPOLOGICAL CROSS SECTIONS WITH N <= 8.
No description provided.
No description provided.
New experimental results are presented on inclusive production properties of\(\bar \Sigma ^{ *+ } \)(1385) and\(\bar \Sigma ^{ *+ } \)(1385) inK+p interactions at 32 GeV/c. The analysis is based on significantly larger statistics than previously available. A comparison is also made of invariantx-distributions ofK0/\(\bar K^0 \),\(\bar \Lambda \) and\(\bar \Xi ^ +\) and of\(\bar \Sigma ^{ *\pm } \)(1385) andK*+(892). These spectra exhibit regularities expected from the quark-recombination picture when it is assumed that the strange mesons and antibaryons are produced off the strange\(\bar s\)-valence-quark in the incidentK+ meson. Transverse momentum distributions are also presented forK*+(892) and\(\bar \Sigma ^{ *\pm } \)(1385) and found to be very similar. The results on strange antibaryon average multiplicities disagree strongly with a recent version of the additive quark model.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
DATA WITHOUT MOMENTUM REJECTION.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.