Date

A measurement of the electric form-factor of the neutron through d(pol.)(e(pol.),e' n)p at Q**2 = 0.5-(GeV/c)**2.

The E93026 collaboration Zhu, H. ; Ahmidouch, A. ; Anklin, H. ; et al.
Phys.Rev.Lett. 87 (2001) 081801, 2001.
Inspire Record 556212 DOI 10.17182/hepdata.31418

We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.

1 data table match query

No description provided.


Elastic electron scattering from c-12 and o-16

Sick, I. ; Mccarthy, J.S. ;
Nucl.Phys.A 150 (1970) 631-654, 1970.
Inspire Record 62489 DOI 10.17182/hepdata.37092

Electron scattering cross sections for carbon and oxygen between q = 1 fm −1 and 4 fm −1 are given. The data are analysed in terms of a phenomenological charge distribution and new information concerning the tail and the center of the charge distribution are obtained. The presence of dispersion effects appears to be necessary to explain the cross sections in the first diffraction minimum. The effect of a finite potential and short range correlations on the form factor are discussed.

4 data tables match query

X ERROR D(TARGET) = 99.99 PCT. X ERROR D(THETA) = 0.9300 DEG.

X ERROR D(TARGET) = 99.99 PCT. X ERROR D(THETA) = 0.9300 DEG.

X ERROR D(THETA) = 0.9300 DEG.

More…

DEUTERON A(Q**2) STRUCTURE FUNCTION AND THE NEUTRON ELECTRIC FORM-FACTOR

Platchkov, S. ; Amroun, A. ; Auffret, S. ; et al.
Nucl.Phys.A 510 (1990) 740-758, 1990.
Inspire Record 292515 DOI 10.17182/hepdata.36877

We have measured the deuteron A ( Q 2 ) structure function in the momentum transfer region between 1 and 18 fm −2 . The accuracy of the data ranges from 2 to 6%. These measurements allow a sensitive test of theoretical predictions. We find that meson-exchange currents and relativistic corrections significantly improve the agreement between experiment and theory. We investigate the sensitivity of A ( Q 2 ) to the nucleon-nucleon interaction and to the neutron electric form factor G E n ( Q 2 ). Our analysis shows that G E n ( Q 2 ) can be extracted from these data with a significantly improved accuracy. The model dependence of this analysis is discussed.

4 data tables match query

Axis error includes +- 15/15 contribution.

Axis error includes +- 15/15 contribution.

Axis error includes +- 15/15 contribution.

More…

Magnetic Form Factor of the Deuteron

Auffret, S. ; Cavedon, J.M. ; Clemens, J.C. ; et al.
Phys.Rev.Lett. 54 (1985) 649-652, 1985.
Inspire Record 214266 DOI 10.17182/hepdata.20337

We have measured the deuteron magnetic form factor B(q2) for values of the momentum transfer squared between 7 and 28 fm−2. The data are compared with relativistic and nonrelativistic predictions including meson-exchange-current contributions. Significant disagreement is found for large momentum transfers.

1 data table match query

No description provided.


Measurements of the Q**2 dependence of the proton and neutron spin structure functions g1(p) and g1(n).

The E155 collaboration Anthony, P.L ; Arnold, R.G ; Averett, T ; et al.
Phys.Lett.B 493 (2000) 19-28, 2000.
Inspire Record 530798 DOI 10.17182/hepdata.27035

The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find $\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007$ at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.

12 data tables match query

Results for G1/F1 for the proton and neutron.

Results for G1/F1 for the proton and neutron.

Results for G1/F1 for the proton and neutron.

More…

Measurement of the deuteron spin structure function g1(d)(x) for 1-(GeV/c)**2 < Q**2 < 40-(GeV/c)**2.

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 463 (1999) 339-345, 1999.
Inspire Record 496268 DOI 10.17182/hepdata.41630

New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 &lt; x &lt; 0.9 and 1 &lt; Q^2 &lt; 40 (GeV/c)^2. These are the first high dose electron scattering data obtained using lithium deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Sigma.

4 data tables match query

Extrapolation to the full x range was made using E154 data (see PL 405B, 180 and PRL 79, 26).

Measurments of g1/F1 and g1 using the 2.75 degree spectrometer.

Measurments of g1/F1 and g1 using the 5.5 degree spectrometer.

More…

Measurements of the Q**2 dependence of the proton and deuteron spin structure functions g1(p) and g1(d)

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Lett.B 364 (1995) 61-68, 1995.
Inspire Record 401107 DOI 10.17182/hepdata.28431

The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.

16 data tables match query

No description provided.

No description provided.

No description provided.

More…

Inclusive electron nucleus scattering at high momentum transfer

Day, D.B. ; McCarthy, J.S. ; Meziani, Z.E. ; et al.
Phys.Rev.C 48 (1993) 1849-1863, 1993.
Inspire Record 365224 DOI 10.17182/hepdata.6186

The response function of nuclei in the quasielastic region at large momentum transfer (q≤10 fm−1) is measured for a series of nuclei, He4, C12, Al27, Fe56, and Au197, up to large values of the Bjorken scaling variables x<2.5.

23 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the proton and deuteron spin structure function g1 in the resonance region.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 78 (1997) 815-819, 1997.
Inspire Record 426735 DOI 10.17182/hepdata.19582

We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 &lt; 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.

8 data tables match query

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.

More…

Precision measurement of the proton spin structure function g1(p).

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 74 (1995) 346-350, 1995.
Inspire Record 375737 DOI 10.17182/hepdata.19665

We have measured the ratio g1pF1p over the range 0.029<x<0.8 and 1.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized ammonia. An evaluation of the integral ∫01g1p(x, Q2)dx at fixed Q2=3 (GeV/c)2 yields 0.127±0.004(stat)±0.010(syst), in agreement with previous experiments, but well below the Ellis-Jaffe sum rule prediction of 0.160±0.006. In the quark-parton model, this implies Δq=0.27±0.10.

2 data tables match query

No description provided.

Values of G1 computed assuming G1/F1 is independent of Q**2 and using a fixed Q**2 of 3 GeV**2.