Search for Higgs boson decays into a pair of pseudoscalar particles in the $\gamma\gamma\tau_{\text{had}}\tau_{\text{had}}$ final state using $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 03 (2025) 190, 2025.
Inspire Record 2861061 DOI 10.17182/hepdata.157781

A search for exotic decays of the 125 GeV Higgs boson into a pair of new spin-0 particles, $H \to aa$, where one decays into a photon pair and the other into a $\tau$-lepton pair, is presented. Hadronic decays of the $\tau$-leptons are considered and reconstructed using a dedicated tagger for collimated $\tau$-lepton pairs. The search uses 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider. The search is performed in the mass range of the $a$ boson between 10 GeV and 60 GeV. No significant excess of events is observed above the Standard Model background expectation. Model-independent upper limits at 95$\% $ confidence level are set on the branching ratio of the Higgs boson to the $\gamma\gamma\tau\tau$ final state, $\mathcal{B}(H\to aa\to \gamma\gamma\tau\tau)$, ranging from 0.2$\% $ to 2$\% $, depending on the $a$-boson mass hypothesis.

5 data tables

Distribution of the diphoton invariant mass for all events satisfying the analysis selections in the full Run 2 dataset.

Scan of the observed $p$-value as a function of $m_{a}$ for the background-only hypothesis.

The observed and expected ($\pm1\sigma$) upper limits at 95% CL on the branching ratio for $H\rightarrow aa\rightarrow \gamma\gamma\tau\tau$ as a function of the resonance mass hypothesis $m_{a}$.

More…

Search for same-charge top-quark pair production in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 084, 2025.
Inspire Record 2832100 DOI 10.17182/hepdata.155341

A search for the production of top-quark pairs with the same electric charge ($tt$ or $\bar{t}\bar{t}$) is presented. The analysis uses proton-proton collision data at $\sqrt{s}=13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with two same-charge leptons and at least two $b$-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95$\%$ confidence level. Corresponding limits on the three Wilson coefficients associated with the ${\cal O}_{tu}^{(1)}$, ${\cal O}_{Qu}^{(1)}$, and ${\cal O}_{Qu}^{(8)}$ operators in the Standard Model Effective Field Theory framework are derived.

15 data tables

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu --}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{cQu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

More…

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

15 data tables

The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.

Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.

Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).

More…

Search for high-mass exclusive $\gamma\gamma\to WW$ and $\gamma\gamma\to ZZ$ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 229, 2023.
Inspire Record 2605178 DOI 10.17182/hepdata.135991

A search is performed for exclusive high-mass $\gamma\gamma$$\to$ WW and $\gamma\gamma$$\to$ ZZ production in proton-proton collisions using intact forward protons reconstructed in near-beam detectors, with both weak bosons decaying into boosted and merged jets. The analysis is based on a sample of proton-proton collisions collected by the CMS and TOTEM experiments at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 100 fb$^{-1}$. No excess above the standard model background prediction is observed, and upper limits are set on the pp $\to$ pWWp and pp $\to$ pZZp cross sections in a fiducial region defined by the diboson invariant mass $m$(VV) $\lt$ 1 TeV (with V = W, Z) and proton fractional momentum loss 0.04 $\lt$$\xi$$\lt$ 0.20. The results are interpreted as new limits on dimension-6 and dimension-8 anomalous quartic gauge couplings.

10 data tables

Expected and observed upper limits on the AQGC operators $a^W_0/\Lambda^2$, with no unitarization. The $y$ axis shows the limit on the ratio of the observed cross section to the cross section predicted for each anomalous coupling value ($\sigma_\mathrm{AQGC}$).

Expected and observed upper limits on the AQGC operators $a^W_C/\Lambda^2$, with no unitarization. The $y$ axis shows the limit on the ratio of the observed cross section to the cross section predicted for each anomalous coupling value ($\sigma_\mathrm{AQGC}$).

Expected and observed upper limits on the AQGC operators $a^Z_0/\Lambda^2$, with no unitarization. The $y$ axis shows the limit on the ratio of the observed cross section to the cross section predicted for each anomalous coupling value ($\sigma_\mathrm{AQGC}$).

More…

Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 020, 2023.
Inspire Record 2152227 DOI 10.17182/hepdata.129875

A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb$^{-1}$. Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for $\mathrm{T\overline{T}}$ production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for $\mathrm{B\overline{B}}$ production with B quark decays to tW.

46 data tables

Distribution of ST in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.

Distribution of the leading jet’s DEEPAK8 light quark or gluon score in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.

Distribution of the MLP T quark score in the SR for the $T\overline{T}$ search. The observed data, predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario, and the background are all shown. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x10 and x20, respectively, for visibility.

More…

Version 2
Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

50 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=2&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=2&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ &lt; $500$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ &gt; $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ &gt; $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=2&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ &lt; $200$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ &gt; $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ &gt; $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Search for heavy resonances and quantum black holes in e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 227, 2023.
Inspire Record 2081834 DOI 10.17182/hepdata.127302

A search is reported for heavy resonances and quantum black holes decaying into e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The e$\mu$, e$\tau$, and $\mu\tau$ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant $\tau$ sneutrino production in $R$ parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant $\tau$ sneutrinos are excluded for masses up to 4.2 TeV in the e$\mu$ channel, 3.7 TeV in the e$\tau$ channel, and 3.6 TeV in the $\mu\tau$ channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the e$\mu$ channel, up to 4.3 TeV in the e$\tau$ channel, and up to 4.1 TeV in the $\mu\tau$ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the e$\mu$ channel, 5.2 TeV in the e$\tau$ channel, and 5.0 TeV in the $\mu\tau$ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.

25 data tables

Mass distributions for the e$\mu$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

Mass distributions for the e$\tau$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

Mass distributions for the $\mu\tau$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

More…

Search for flavor-changing neutral current interactions of the top quark and Higgs boson in final states with two photons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
Phys.Rev.Lett. 129 (2022) 032001, 2022.
Inspire Record 2111572 DOI 10.17182/hepdata.105999

Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.

1 data table

Expected and observed 95\% CL upper limits on the branching fraction of the top quark decaying to the Higgs boson and a light-flavor quark (either an up or a charm quark)