A search for the rare decay D$^0$$\to$$μ^+μ^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0π^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$μ^+μ^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.
Summary of branching fraction.
Summary of systematic uncertainties for the D->mumu branching fraction measurement with their corresponding contributions in the signal channel.
The distributions of the dipion invariant mass $m_{\pi\pi}$ for the normalization channel in data.
We search for the rare decay $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ in a $362\ \rm{fb}^{-1}$ sample of electron-positron collisions at the $\Upsilon(4S)$ resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying $B$ meson in $\Upsilon(4S) \to B\kern 0.18em\overline{\kern -0.18em B}{}$ events to suppress background from other decays of the signal $B$ candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying $B$ meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ branching fraction of $\left[2.7\pm 0.5(\mathrm{stat})\pm 0.5(\mathrm{syst})\right] \times 10^{-5}$ and $\left[1.1^{+0.9}_{-0.8}(\mathrm{stat}){}^{+0.8}_{-0.5}(\mathrm{syst})\right] \times 10^{-5}$, respectively. Combining the results, we determine the branching fraction of the decay $B^{+}\rightarrow K^{+}\nu\bar{\nu}$ to be $\left[2.3 \pm 0.5(\mathrm{stat})^{+0.5}_{-0.4}(\mathrm{syst})\right]\times 10^{-5}$, providing the first evidence for this decay at $3.5$ standard deviations. The combined result is $2.7$ standard deviations above the standard model expectation.
- - - - - - - - Overview of HEPData Record - - - - - - - -<br/><br/></ul><b>Post-fit yields:</b><ul><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20fit%20variable%20(ITA)">Y(4S) fit variable (ITA)</a><li><a href="146803?version=1&table=Postfit%20yields%20off-resonance%3A%20fit%20variable%20(ITA)">Off-resonance fit variable (ITA)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24%5Ceta(%5Crm%7BBDT%7D_%7B2%7D)%24%20(ITA)">Y(4S) $\eta(\rm{BDT}_{2})$ (ITA)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24q%5E%7B2%7D%24%20(HTA)">Y(4S) $q^{2}$ (ITA)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24%5Ceta(%5Crm%7BBDT%7D_%7B2%7D)%24%20(ITA%2C%20signal-rich)">Y(4S) $\eta(\rm{BDT}_{2})$ (ITA, signal-rich)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24q%5E%7B2%7D%24%20%20(ITA%2C%20signal-rich)">Y(4S) $q^{2}$ (ITA, signal-rich)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20fit%20variable%20(HTA)">Y(4S) fit variable (HTA)</a><li><a href="146803?version=1&table=Postfit%20yields%20Y(4S)%3A%20%24q%5E%7B2%7D%24%20(HTA)">Y(4S) $q^{2}$ (HTA)</a></ul><b>Signal selection efficiency:</b><ul><li><a href="146803?version=1&table=Selection%20efficiency%20(ITA)">ITA</a><li><a href="146803?version=1&table=Selection%20efficiency%20(HTA)">HTA</a></ul><b>Likelihoods:</b><ul><li><a href="146803?version=1&table=Profile%20likelihoods%20(HTA)">HTA</a><li><a href="146803?version=1&table=Profile%20likelihoods%20(ITA)">ITA</a><li><a href="146803?version=1&table=Profile%20likelihoods%20(Combined)">Combined</a></ul><b>Branching fraction summary:</b><ul><li><a href="146803?version=1&table=Branching%20fraction%20summary">Branching fraction summary</a></ul></ul>HistFactory json with full statistical model for combined likelihood and minimal fitting example are included under Resources.<ul>
Observed yields and fit results in bins of the $\eta(\rm{BDT}_{2})\times q^2_{\mathrm{rec}}$ space obtained by the ITA simultaneous fit to the off- and on-resonance data, corresponding to an integrated luminosity of 42 and 362 fb$^{-1}$, respectively. The yields are shown individually for the $B^+ \rightarrow K^{+}\nu\bar\nu$ signal, neutral and charged $B$-meson decays and the sum of the five continuum categories. The yields are obtained in bins of the $\eta(\rm{BDT}_{2})\times q^2_{\mathrm{rec}}$ space.
Observed yields and fit results in bins of the $\eta(\rm{BDT}_{2})\times q^2_{\mathrm{rec}}$ space obtained by the ITA simultaneous fit to the off- and on-resonance data, corresponding to an integrated luminosity of 42 and 362 fb$^{-1}$, respectively. The yields are shown individually for the $B^+ \rightarrow K^{+}\nu\bar\nu$ signal, neutral and charged $B$-meson decays and the sum of the five continuum categories. The yields are obtained in bins of the $\eta(\rm{BDT}_{2})\times q^2_{\mathrm{rec}}$ space.