We report a measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an $e^+e^-$ data sample corresponding to 191 $\text{fb}^{-1}$ of integrated luminosity, collected at a center-of-mass energy at or near the $\Upsilon{(4S)}$ resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in $e^+e^- \to \pi^+\pi^-\pi^0\gamma$ events, which involve a $\pi^0 \to \gamma\gamma$ decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the $\omega$ and $\phi$ resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62-1.80 GeV energy range yield $ a_\mu^{3\pi} = [48.91 \pm 0.23~(\mathrm{stat}) \pm 1.07~(\mathrm{syst})] \times 10^{-10} $ for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by $2.5$ standard deviations from the most precise current determination.
Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 0.62--1.05~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.
Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 1.05--3.50~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.
The statistic covariance matrix for the $e^+e^- \to \pi^+ \pi^- \pi^0$ cross section measurement at the Belle II. The 212 x 212 matrix of the energy ranges from 0.62 to 3.50 GeV. This covariance matrix, obtained by propagating the covariance matrix in the unfolding procedure, shows the total statistical uncertainties for the cross section results.
Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.
Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
Mixed higher-order flow harmonic $v_5\{\Psi_{23}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
Mixed higher-order flow harmonic $v_6\{\Psi_{222}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.
We present the first measurement of the two-particle transverse momentum differential correlation function, $P_2\equiv\langle \Delta p_{\rm T} \Delta p_{\rm T} \rangle /\langle p_{\rm T} \rangle^2$, in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} =$ 2.76 TeV. Results for $P_2$ are reported as a function of relative pseudorapidity ($\Delta \eta$) and azimuthal angle ($\Delta \varphi$) between two particles for different collision centralities. The $\Delta \phi$ dependence is found to be largely independent of $\Delta \eta$ for $|\Delta \eta| \geq$ 0.9. In 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around $\Delta \varphi = \pi$ (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of $P_2$, studied as a function of collision centrality, show that correlations at $|\Delta \eta| \geq$ 0.9 can be well reproduced by a flow ansatz based on the notion that measured momentum correlations are strictly determined by the collective motion of the system.
Projection of $P_{2}$ along $\Delta\varphi$ in 0-5% centrality in the range $|\Delta \eta| \geq$ 0.9
$v_{2}$ coefficients measured from $P_2$ for particle pairs in the range $0.2 \leq |\Delta\eta| \leq 0.9$.
$v_{2}$ coefficients measured from $P_2$ for particle pairs in the range $0.9 \leq |\Delta\eta| \leq 1.9$.
We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5
Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.
Differential production cross sections of $J/\psi$ as a function of rapidity.
Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.
Transverse momentum ($p_{\rm{T}}$) spectra of pions, kaons, and protons up to $p_{\rm{T}} = 20$ GeV/$c$ have been measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV using the ALICE detector for six different centrality classes covering 0-80%. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at $p_{\rm{T}} \approx 3$ GeV/$c$ in central Pb-Pb collisions that decreases towards more peripheral collisions. For $p_{\rm{T}} > 10$ GeV/$c$, the nuclear modification factor is found to be the same for all three particle species in each centrality interval within systematic uncertainties of 10-20%. This suggests there is no direct interplay between the energy loss in the medium and the particle species composition in the hard core of the quenched jet. For $p_{\rm{T}} < 10$ GeV/$c$, the data provide important constraints for models aimed at describing the transition from soft to hard physics.
Invariant yields of identified pions in Pb-Pb collisions.
Invariant yields of identified kaons in Pb-Pb collisions.
Invariant yields of identified protons in Pb-Pb collisions.
The second-order azimuthal anisotropy Fourier harmonics, v2, are obtained in pPb and PbPb collisions over a wide pseudorapidity (eta) range based on correlations among six or more charged particles. The pPb data, corresponding to an integrated luminosity of 35 inverse nanobarns, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. A sample of semi-peripheral PbPb collision data at sqrt(s[NN])= 2.76 TeV, corresponding to an integrated luminosity of 2.5 inverse microbarns and covering a similar range of particle multiplicities as the pPb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the v2 coefficients, extending previous studies of two- and four-particle correlations. For both the pPb and PbPb systems, the v2 values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data support the interpretation of a collective origin for the previously observed long-range (large Delta[eta]) correlations in both systems. The ratios of v2 values corresponding to correlations including different numbers of particles are compared to theoretical predictions that assume a hydrodynamic behavior of a pPb system dominated by fluctuations in the positions of participant nucleons. These results provide new insights into the multi-particle dynamics of collision systems with a very small overlapping region.
The cumulant $c_2\{6\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in PbPb collisions.
The cumulant $c_2\{8\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in PbPb collisions.
The cumulant $c_2\{6\}$ extracted for all charged particles with $0.3 < p_T < 3.0$ GeV/c as a function of $N_{trk}^{offline}$ in pPb collisions.
pp-elastic differential cross sections are reported at 492 MeV from 40° to 90°, and at 576, 642, 728, and 793 MeV from 75° to 90° c.m., with an absolute accuracy of less than 1%. These data, obtained with polyethylene targets, agree with recent measurements at the same energies obtained with a liquid-hydrogen target. © 1996 The American Physical Society.
No description provided.
No description provided.
No description provided.
We present a new determination of the nonsinglet structure function ${\mathit{F}}_{2}^{\mathit{p}}$ - ${\mathit{F}}_{2}^{\mathit{n}}$ at ${\mathit{Q}}^{2}$=4 ${\mathrm{GeV}}^{2}$ using recently measured values of ${\mathit{F}}_{2}^{\mathit{d}}$ and ${\mathit{F}}_{2}^{\mathit{n}}$/${\mathit{F}}_{2}^{\mathit{p}}$. A new evaluation of the Gottfried sum is given, which remains below the simple quark-parton model value of 1/3.
Errors of F2(D) are the estimated total uncertainties and those on the ratio and difference are statistical only.
Values of the Gottfried Sum Rule integral (GS) defined as the integral between X(C=MIN) and X = 0.8 of (F2(P)-F2(N))DX/X.
No description provided.
Absolute pp-elastic-differential cross sections were measured at incident energies 492, 576, 642, 728, and 793 MeV from about 30° to 90° c.m. The total uncertainty was determined to be less than 1%, made possible by particle counting for beam normalization and extensive cross-checks of systematic effects. These new data are consistent with previous data above 600 MeV but have uncertainties about a factor of 10 smaller. Near 500 MeV these data are consistent with 90° data from TRIUMF, but differ significantly from similar data from PSI; the cause of this discrepancy is discussed.
No description provided.
No description provided.
No description provided.
We have measured the spin-transfer parameters KLL, KSL, KLS, and KSS at 635 MeV from 50° to 178° c.m. and at 485 MeV from 74° to 176° c.m. These new data have a significant impact on the phase-shift analyses. There are now sufficient data near these energies to overdetermine the elastic nucleon-nucleon amplitudes.
Spin transfer parameters from np elastic scattering at 635 MeV. There is an additional overall normalisation of 2 PCT.
Spin transfer parameters from np elastic scattering at 485 MeV. There is an additional overall normalisation of 2 PCT.