An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in $pp$ collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider, have been considered. An integrated luminosity of 3.2 fb$^{-1}$, corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 GeV and 1050 GeV (1160 GeV and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.
Normalisation factors for the main backgrounds obtained from the combined fit in each of the channels. The total uncertainty is given.
Search for the first generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.
Search for the second generation leptoquarks (LQs). Event yields in the Z control region (CR), ttbar CR and in the signal region (SR). Each CR is treated as one bin in the profile likelihood fit. The SR is split to 7 bins according to $m_{\text{LQ}}^{\text{min}}$ for the fit. The table below shows the total number of events in each CR. For the SR, it shows the number of events per 100 GeV as a function of $m_{\text{LQ}}^{\text{min}}$. The background expectations are scaled by a scale factor extracted from the fit. However, the uncertainties shown are the pre-fit ones. The data event yield uncertainty is statistical (gaussian). The background uncertainty consists of all the experimental and theoretical components summed in quadrature. The uncertainty of the fit-extracted background scale factor is also added in quadrature.
We present a search for a non-Standard-Model invisible particle $X^0$ in the mass range $0.1\textrm{-}1.8 \,{\rm GeV}/{c^2}$ in $B^{+}\to e^{+} X^{0}$ and $B^{+}\to \mu^{+} X^{0}$ decays. The results are obtained from a $711~{\rm fb}^{-1}$ data sample that corresponds to $772 \times 10^{6} B\bar{B}$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. One $B$ meson is fully reconstructed in a hadronic mode to determine the momentum of the lepton of the signal decay in the rest frame of the recoiling partner $B$ meson. We find no evidence of a signal and set upper limits on the order of $10^{-6}$.
Summary of upper limits at the 90$\%$ CL for $B^+ \to e^+ X^0$.
Summary of upper limits at the 90$\%$ CL for $B^+ \to \mu^+ X^0$.
The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.
The distribution of the missing transverse momentum is shown in hard-lepton 6-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in hard-lepton 6-jet W+jets control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in soft-lepton 2-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in $\sqrt{s}=$ 13 TeV proton--proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb$^{-1}$ of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
Observed and expected background effective mass distributions in control region CRgamma for SR4jt.
Observed and expected background effective mass distributions in control region CRW for SR4jt.
Observed and expected background effective mass distributions in control region CRT for SR4jt.
We measure the forward-backward asymmetries $A_{\rm FB}$ of charged $\Xi$ and $\Omega$ baryons produced in $p \bar{p}$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV as a function of the baryon rapidity $y$. We find that the asymmetries $A_{\rm FB}$ for charged $\Xi$ and $\Omega$ baryons are consistent with zero within statistical uncertainties.
Forward-backward asymmetry $A_{\rm FB}$ of $\Xi^\mp$ baryons with $p_T > 2$ GeV in minimum bias events, $p\bar{p} \rightarrow \Xi^\mp X$, and muon events $p \bar{p} \rightarrow \mu \Xi^\mp X$, and $A_{\rm FB}$ of $\Omega^-$ and $\Omega^+$ baryons with $p_T > 2$ GeV in muon events $p \bar{p} \rightarrow \mu \Omega^\mp X$. The first uncertainty is statistical, the second is systematic due to the detector asymmetry $A'_{\rm NS} A'_\Xi$.
A measurement of the cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV is presented. The measurement covers the pseudo rapidity ranges $|\eta^{\gamma}| < 1.37$ and $1.56 \leq |\eta^{\gamma}| < 2.37$ in the transverse energy range $25 < E_{\rm T}^{\gamma} < 1500$ GeV. The results are based on an integrated luminosity of 20.2 fb$^{-1}$, recorded by the ATLAS detector at the LHC. Photon candidates are identified by combining information from the calorimeters and the inner tracker. The background is subtracted using a data-driven technique, based on the observed calorimeter shower-shape variables and the deposition of hadronic energy in a narrow cone around the photon candidate. The measured cross sections are compared with leading-order and next-to-leading order perturbative QCD calculations and are found to be in a good agreement over ten orders of magnitude.
The inclusive prompt photon cross section with systematic and statistical uncertainties for the region |eta(gamma)| < 0.6.
The inclusive prompt photon cross section with systematic and statistical uncertainties for the region 0.6<|eta(gamma)| < 1.37.
The inclusive prompt photon cross section with systematic and statistical uncertainties for the region 1.56<|eta(gamma)| < 1.81.
The process $e^{+}e^{-}\to \eta^{\prime} J/\psi$ is observed for the first time with a statistical significance of $8.6\sigma$ at center-of-mass energy $\sqrt{s} = 4.226$ GeV and $7.3\sigma$ at $\sqrt{s} = 4.258$ GeV using data samples collected with the BESIII detector. The Born cross sections are measured to be $(3.7 \pm 0.7 \pm 0.3)$ and $(3.9 \pm 0.8 \pm 0.3)$ pb at $\sqrt{s} = 4.226$ and $4.258$ GeV, respectively, where the first errors are statistical and the second systematic. Upper limits at the 90% confidence level of the Born cross sections are also reported at other 12 energy points.
Summary of the values used to calculate the Born cross section of $e^{+}e^{-}\to\eta^{\prime} J/\psi$. The upper limits are at the $90\%$ C.L.
At the Fermilab Tevatron proton-antiproton ($p\bar{p}$) collider, Drell-Yan lepton pairs are produced in the process $p \bar{p} \rightarrow e^+e^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $e^-$ as a function of the $e^+e^-$-pair mass is used to obtain $\sin^2\theta^{\rm lept}_{\rm eff}$, the effective leptonic determination of the electroweak-mixing parameter $\sin^2\theta_W$. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4~fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2\theta^{\rm lept}_{\rm eff}$ is found to be $0.23248 \pm 0.00053$. The combination with the previous CDF measurement based on $\mu^+\mu^-$ pairs yields $\sin^2\theta^{\rm lept}_{\rm eff} = 0.23221 \pm 0.00046$. This result, when interpreted within the specified context of the standard model assuming $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ and that the $W$- and $Z$-boson masses are on-shell, yields $\sin^2\theta_W = 0.22400 \pm 0.00045$, or equivalently a $W$-boson mass of $80.328 \pm 0.024 \;{\rm GeV}/c^2$.
Best-fit values of $\sin^2\theta_{\rm eff}^{\rm lept}$, $\sin^2\theta_W$ and $M_W$(indirect) from the $ee$-channel measurement of $A_{\rm fb}$ and a combination with the previous CDF measurement based on muon pairs.
Fully corrected $A_{fb}$ measurement for electron pairs with $|y|<1.7$. The measurement uncertainties are bin-by-bin unfolding estimates.
The $f_1(1285)$ meson with mass $1281.0 \pm 0.8$ MeV/$c^2$ and width $18.4 \pm 1.4$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $\eta\pi^{+}\pi^{-}$, $K^+\bar{K}^0\pi^-$, and $K^-K^0\pi^+$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the $\eta\pi^{+}\pi^{-}$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $f_1(1285)$ identity, rather than the pseudoscalar $0^-$ $\eta(1295)$. The production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $\eta\pi\pi$ go dominantly via the intermediate $a_0^\pm(980)\pi^\mp$ states, with the branching ratio $\Gamma(a_0\pi \text{ (no} \bar{K} K\text{)}) / \Gamma(\eta\pi\pi \text{(all)}) = 0.74\pm0.09$. The branching ratios $\Gamma(K \bar{K} \pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.033$ and $\Gamma(\gamma\rho^0)/\Gamma(\eta\pi\pi) = 0.047\pm0.018$ were also obtained. The first is in agreement with previous data for the $f_1(1285)$, while the latter is lower than the world average.
Differential cross section for $\gamma p \to f_1(1285) p \to \eta \pi^+ \pi^- p$ in nanobarns/steradian. The point-to-point uncertainties are given in separate statistical and systematic contributions.
Measurements of the top--antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-${p}_{\rm{T}}$ leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of $20.3$ $\textrm{fb}^{-1}$ from $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the $t\bar{t}$ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: $A^{\ell\ell}_{\textrm{C}}$ based on the selected leptons and $A^{t\bar{t}}_{\textrm{C}}$ based on the reconstructed $t\bar{t}$ final state. The inclusive asymmetries are measured in the full phase space to be $A^{\ell\ell}_{\textrm{C}} = 0.008 \pm 0.006$ and $A^{t\bar{t}}_{\textrm{C}} = 0.021 \pm 0.016$, which are in agreement with the Standard Model predictions of $A^{\ell\ell}_{\textrm{C}} = 0.0064 \pm 0.0003 $ and $A^{t\bar{t}}_{\textrm{C}} = 0.0111 \pm 0.0004$.
Unfolded distribution for the inclusive $\Delta|\eta|$ observable in the fiducial volume.
Unfolded distribution for the inclusive $\Delta|y|$ observable in the fiducial volume.
The leptonic inclusive asymmetry in the fiducial volume.