Measurements of the production of jets of particles in association with a Z boson in pp collisions at $\sqrt{s}$ = 7 TeV are presented, using data corresponding to an integrated luminosity of 4.6/fb collected by the ATLAS experiment at the Large Hadron Collider. Inclusive and differential jet cross sections in Z events, with Z decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and rapidity |y| < 4.4. The results are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers.
The distribution of Inclusive jet multiplicity. The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.
The distribution of Ratio of cross sections for successive inclusive jet multiplicities n/(n-1). The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.
The distribution of exclusive jet multiplicity. The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.
The production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV is studied with the LHCb detector. The J/psi and Upsilon mesons are reconstructed in the mu+mu- decay mode and the signal yields are determined with a fit to the mu+mu- invariant mass distributions. The analysis is performed in the rapidity range 2.0<y<4.5 and transverse momentum range 0<p_T<14(15) GeV/c of the J/psi(Upsilon) mesons. The J/psi and Upsilon production cross-sections and the fraction of J/psi mesons from b-hadron decays are measured as a function of the meson p_T and y.
The total integrated cross sections for prompt J/PSI production, assuming no polarisation, and J/PSI production from b-hadron decays in the rapidity range 2.0-4.5 and transverse momentum 0-14 GeV/c;.
Differential production cross section in rapidity for prompt J/PSI mesons (assuming no polarisation) and from J/PSI from b-hadron decays.;.
The double-differential cross sections for prompt J/PSI production (assuming no polarisation) and production of J/PSI from b-hadron decays as a function of transverse momentum for the rapidity range 2.0-2.5. Also shown in the final column is the fraction (in %) of J/PSIs from the latter.
A search has been performed for photons originating in the decay of a neutral long-lived particle, exploiting the capabilities of the ATLAS electromagnetic calorimeter to make precise measurements of the flight direction of photons, as well as the calorimeter's excellent time resolution. The search has been made in the diphoton plus missing transverse energy final state, using the full data sample of 4.8/fb of 7 TeV proton-proton collisions collected in 2011 with the ATLAS detector at the LHC. No excess is observed above the background expected from Standard Model processes. The results are used to set exclusion limits in the context of Gauge Mediated Supersymmetry Breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying with a lifetime in excess of 0.25 ns into a photon and a gravitino.
The 95% CL observed number of signal events vs lifetime for a neutralino with Lambda of 120 TeV together with the SM expectation and the predicition of the SPS8 GMSB model.
The 95% CL observed cross-section vs lifetime for a neutralino with Lambda of 120 TeV together with the SM expectation and the predicition of the SPS8 GMSB model.
The observed exclusion limits on neutralino lifetime as a function of lambda together with the SM expectation.
Cross sections for elastic and proton-dissociative photoproduction of J/psi mesons are measured with the H1 detector in positron-proton collisions at HERA. The data were collected at $ep$ centre-of-mass energies sqrt{s} approx 318 GeV and sqrt{s} approx 225 GeV, corresponding to integrated luminosities of L = 130 pb^{-1} and L = 10.8 pb^{-1}, respectively. The cross sections are measured as a function of the photon-proton centre-of-mass energy in the range 25< Wgp < 110 GeV. Differential cross sections $\mathrm{d}\sigma / \mathrm{d}t$, where $t$ is the squared four-momentum transfer at the proton vertex, are measured in the range $|t| < 1.2 \, \gevsq$ for the elastic process and $|t| < 8 \, \gevsq$ for proton dissociation. The results are compared to other measurements. The $\Wgp$ and $t$-dependences are parametrised using phenomenological fits.
The elastic photoproduction cross section derived from the high-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.
The proton-dissociative photoproduction cross section derived from the high-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.
The elastic photoproduction cross section derived from the low-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.
The inclusive jet cross-section has been measured in proton-proton collisions at sqrt(s)=2.76 TeV in a dataset corresponding to an integrated luminosity of 0.20pb-1 collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-kt algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum pT and jet rapidity y, covering a range of 20 <= pT < 430 GeV and |y| < 4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at sqrt(s)=7 TeV, published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity xT = 2 pT / sqrt(s), in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at sqrt(s)=2.76 TeV and sqrt(s)=7 TeV are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.
The measured inclusive jet double-differential cross section in the rapidity bin |y| < 0.3 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.
The measured inclusive jet double-differential cross section in the rapidity bin 0.3 <= |y| < 0.8 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.
The measured inclusive jet double-differential cross section in the rapidity bin 0.8 <= |y| < 1.2 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.
The transverse momentum (p_T) spectra and ratios of identified charged hadrons (\pi^+/-, K^+/-, p, p^bar) produced in sqrt(s_NN)=200 GeV Au+Au and d+Au collisions are reported in five different centrality classes for each collision species. The measurements of pions and protons are reported up to p_T=6 GeV/c (5 GeV/c), and the measurements of kaons are reported up to p_T=4 GeV/c (3.5 GeV/c) in Au+Au (d+Au) collisions. In the intermediate p_T region, between 2--5 GeV/c, a significant enhancement of baryon to meson ratios compared to those measured in p+p collisions is observed. This enhancement is present in both Au+Au and d+Au collisions, and increases as the collisions become more central. We compare a class of peripheral Au+Au collisions with a class of central d+Au collisions which have a comparable number of participating nucleons and binary nucleon-nucleon collisions. The p_T dependent particle ratios for these classes display a remarkable similarity, which is then discussed.
kaon AuAu Invariant yields versus $p_T$
kaon dAu Invariant yields versus $p_T$
pion AuAu Invariant yields versus $p_T$
The cross section for $e^+ e^- \to \pi^+ \pi^- J/\psi$ between 3.8 GeV and 5.5 GeV is measured with a 967 fb$^{-1}$ data sample collected by the Belle detector at or near the $\Upsilon(nS)$ ($n = 1,\ 2,\ ...,\ 5$) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of $\pi^+ \pi^- J/\psi$ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parameterization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of $Y(4260) \to \pi^+ \pi^- J/\psi$ decays, a structure is observed in the $M(\pi^\pm\jpsi)$ mass spectrum with $5.2\sigma$ significance, with mass $M=(3894.5\pm 6.6\pm 4.5) {\rm MeV}/c^2$ and width $\Gamma=(63\pm 24\pm 26)$ MeV/$c^{2}$, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmonium-like state.
Measured cross section with statistical errors only.
The production of $D^{*\pm}$ mesons in deep inelastic $ep$ scattering has been measured for exchanged photon virtualities $ 5<Q^2<1000 \gev^2 $, using an integrated luminosity of 363 pb$^{-1}$ with the ZEUS detector at HERA. Differential cross sections have been measured and compared to next-to-leading-order QCD calculations. The cross-sections are used to extract the charm contribution to the proton structure functions, expressed in terms of the reduced charm cross section, $\sigma_{\rm red}^{c\bar{c}}$. Theoretical calculations based on fits to inclusive HERA data are compared to the results.
D(SIG)/DPT IN NB/GEV as a function of PT IN GEV.
D(SIG)/DETARAP IN NB as a function of ETARAP.
D(SIG)/DZ IN NB as a function of Z.
We report on a measurement of the cross section for direct-photon production in association with a heavy quark using the full data set of $\sqrt{s}=1.96$ TeV proton-antiproton collisions corresponding to 9.1 fb$^{-1}$ of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron. The measurements are performed as a function of the photon transverse momentum, covering photon transverse momentum between 30 and 300 GeV, photon rapidities $|y^{\gamma}|<1.0$, heavy-quark-jet transverse momentum $p_{T}^{jet}>20$ GeV, and jet rapidities $|y^{jet}|<1.5$. The results are compared with several theoretical predictions.
The cross section for GAMMA BQUARK X production as a function of the transverse energy of the GAMMA.
The cross section for GAMMA CQUARK X production as a function of the transverse energy of the GAMMA.
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1<eta<4.9 in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in Pb+Pb collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of p+Pb collisions. Despite the small transverse spatial extent of the p+Pb collision system, the large magnitude of v_2 and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in p+Pb reactions.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 25-40 GeV.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 40-55 GeV.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in the event activity bin of 55-80 GeV.