The leptoproduction of J/psi mesons is studied in inelastic reactions for four momentum transfers 2<Q^2<100GeV^2. The data were taken with the H1 detector at the electron proton collider HERA and correspond to an integrated luminosity of 77 pb-1. Single differential and double differential cross sections are measured with increased precision compared with previous analyses. New leading order calculations within the non-relativistic QCD factorisation approach including colour octet and colour singlet contributions are compared with the data and are found to give a reasonable description of most distributions. An exception is the shape of the distribution in the J/psi fractional energy, z, which deviates significantly from that of the data. Comparisons with photoproduction are made and the polarisation of the produced J/psi meson is analysed.
J/PSI leptoproduction differential cross section as a function of Q**2.
J/PSI leptoproduction differential cross section as a function of Z.
J/PSI leptoproduction differential cross section as a function of W.
The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 < x < 0.1 and 0.1 < x < 0.87. From sigma(D*) the charm production cross-section sigma(e+e- -> e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 < x < 0.87 and 5 < Q2 < 100 GeV2. For x > 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b
The inclusive D* production cross section.
The inclusive charm quark pair cross section. The second DSYS error is due to extrapolation.
The measured structure function F2(C=CHARM). The second DSYS error is due to extrapolation.
Differential cross sections of the reactions $(\gamma,\pi^\circ\pi^\circ)$ and $(\gamma,\pi^\circ\pi^++\pi^\circ\pi^-)$ have been measured for several nuclei ($^1$H,$^{12}$C, and $^{\rm nat}$Pb) at an incident-photon energy of $E_{\gamma}$=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the $\pi\pi$ invariant-mass distribution is found in the $\pi^\circ\pi^\circ$ channel. This dependence is not observed in the $\pi^\circ\pi^{+/-}$ channel and is consistent with an in-medium modification of the $\pi\pi$ interaction in the $I$=$J$=0 channel. The data are compared to $\pi$-induced measurements and to calculations within a chiral-unitary approach.
Differential cross section for PI0PI0 production with a proton target. Errors are statistical only. Note that the data given in this table are sightly different (newer) than the data points presented in the paper.
Differential cross section for PI0PI0 production with a Carbon target. Errors are statistical only.
Differential cross section for PI0PI0 production with a Lead target. Errors are statistical only.
We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV at RHIC. The value of v2 as a function of transverse momentum of the produced particles pt and collision centrality is presented for both particles up to pt 3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.
$v_2$ of $K_s^0$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.
$v_2$ of $K_s^0$ as a function of $p_T$ for 11-45% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.
$v_2$ of $\Lambda+\bar{\Lambda}$ as a function of $p_T$ for 0-11% centrality in Au+Au collisions at 130 GeV. Systematic errors of $\pm$0.005 for particle identification and background subtraction and $^{+0}_{-0.005}$ for nonflow effects.
We have measured $\rho$ , the ratio of the real to the imaginary part of the $p \bar{p}$ forward elastic scattering amplitude, at $\sqrt{s}$ = 1.8 TeV. Our result is $\rho$ = 0.132 $\pm$ 0.056; this can be combined with a previous measurement at the same energy to give $\rho$ = 0.135 $\pm$ 0.044.
Measured value of the total cross section.
The measured value of the ratio of real to imaginary part of the forward scattering amplitude.
Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of $45^\circ$, $125^\circ$, and $135^\circ$. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, $\alpha_N + \beta_N = 17.4 \pm 3.7$ and $\alpha_N - \beta_N = 6.4 \pm 2.4$ (in units of $10^{-4}$ fm$^3$), have been determined. By combining the latter with the global-averaged value for $\alpha_p - \beta_p$ and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of $\alpha_n= 8.8 \pm 2.4$(total) $\pm 3.0$(model) and $\beta_n = 6.5 \mp 2.4$(total) $\mp 3.0$(model), respectively.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.6 MeV.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.9 MeV.
Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 55.9 MeV.
We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.
Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 2.75 degrees and incident energy 29.1 GeV. Errors shown are statistical only.
Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 5.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.
Values of A2 and X*G2 from proton and deuterium target data at mean electron scattering angle of 10.5 degrees and incident energy 29.1 GeV. Errors shown are statistical only.
We have measured the production of strange baryons and antibaryons in 340-GeV/c Σ−+C and 260-GeV/c n+C interactions. The single xF distributions show the expected leading particle effect, and the single pt2 distributions show a distinct nonthermal behavior. The xF distributions of Λ-Λ pairs indicate two different phase space distributions for the two coincident baryons. On the other hand two Λ¯’s show identical distributions. Momentum conservation during the formation process may represent a significant source for the observed behavior.
Total inclusive LAMBDA and LAMBDABAR production cross sections for the SIGMA- beam on the Carbon target.
Total inclusive LAMBDA and LAMBDABAR production cross sections for the Neutron beam on the Carbon target.
Total inclusive LAMBDA LAMBDA and LAMBDABAR LAMBDABAR pair production crosssections for the SIGMA- beam on the Carbon target.
We present results on the production of high transverse momentum pizero and eta mesons in pp and pBe interactions at 530 and 800 GeV/c. The data span the kinematic ranges: 1 < p_T < 10 GeV/c in transverse momentum and 1.5 units in rapidity. The inclusive pizero cross sections are compared with next-to-leading order QCD calculations and to expectations based on a phenomenological parton-k_T model.
Invariant differetrial cross sections/nucleon for the inclusive reaction p Be --> pi0 X at 530 and 800 GEV, averaged over the c.m. rapidity interval -0.75 to 0.75 and -1.0 to 0.5 respectively.
Invariant differetrial cross sections/nucleon for the inclusive reaction p p --> pi0 X at 530 and 800 GEV, averaged over the c.m. rapidity interval -0.75 to 0.75 and -1.0 to 0.5 respectively.
The averaged invariant differential cross section/nucleon as a function of rapidity in the PT intervals 1.0-1.5, 1.5-2.0 and 2.0-2.5 GeV for the inclusive reaction p BE --> pi0 X at 530 and 800 GeV GeV.
We present results on the measurement of lambda and lambda^bar production in Au+Au collisions at sqrt(s_NN)=130 GeV with the PHENIX detector at RHIC. The transverse momentum spectra were measured for minimum bias and for the 5% most central events. The lambda^bar/lambda ratios are constant as a function of p_T and the number of participants. The measured net lambda density is significantly larger than predicted by models based on hadronic strings (e.g. HIJING) but in approximate agreement with models which include the gluon junction mechanism.
Transverse momentum spectra of $\Lambda$ and $\bar{\Lambda}$ for minimum-bias and for the $5\%$ most central events.
The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of $p_T$.
The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of the number of participants.