None
No description provided.
None
No description provided.
Measurements of the angular distribution of the cross section for the photoproduction of the K+Λ system from hydrogen have been made in the c.m. angular interval from 15° to 85° at a photon energy of 1200 MeV. The reaction was identified by detecting the K+ mesons with a magnet spectrometer and a velocity selection system consisting of two Čerenkov counters. The angular distribution at this energy is very similar to that at lower energies in that it is peaked forward and is easily fit with a quadratic in cosθc.m.. Special emphasis was placed on the forward direction in an attempt to find evidence for the one-K-exchange pole. A Taylor-Moravcsik analysis of the data is presented, but the results are inconclusive.
No description provided.
No description provided.
No description provided.
The elastic electron-proton scattering cross section has been measured at laboratory angles between 90° and 144° and for values of the four-momentum transfer squared between 25 and 45 F−2 (incident electron laboratory energies from 830 to 1360 MeV). Both the scattered electrons and the recoil protons were momentum analyzed and counted in coincidence, making possible background-free measurements down to cross sections of the order of 10−35 cm2/sr. The data are consistent with the Rosenbluth formula, and the resulting form factors tie on well with previous measurements at lower momentum transfer, continuing the established trend.
No description provided.
No description provided.
No description provided.
None
'1'. '2'.
No description provided.
No description provided.
None
No description provided.
No description provided.
The elastic differential cross section for the scattering of negative pions by hydrogen was measured at laboratory-system pion kinetic energies of 230, 290, 370, and 427 Mev. The elastically scattered pions were detected by a counter telescope which discriminated against recoil protons and inelastic pions on the basis of range. Differential cross sections were obtained at nine angles for each energy and were fitted by a least-squares program to a series of Legendre polynomials. At the three higher energies, D waves are required to give satisfactory fits to the data. The real parts of the forward-scattering amplitudes calculated from this experiment are in agreement with the predictions of dispersion theory. The results of this experiment, in conjunction with data from other pion-nucleon scattering experiments, support the hypothesis of charge independence at these higher energies.
No description provided.
No description provided.
No description provided.
Total cross sections for negative pions on protons were measured at laboratory energies of 230, 290, 370, 427, and 460 Mev. The measurements were made in the same pion beams as and at energies identical with those of our π−−p differential scattering experiments. Comparisons of the total and differential scattering can be made with the dispersion theory at a given energy without introducing the systematic errors that would normally enter due to uncertainties in the parameters of more than one pion beam. The measured total cross sections are found to agree within statistics with other measured values, and with the sums of elastic, inelastic, and charge-exchange cross sections measured at this laboratory. The results are:
No description provided.
None
No description provided.
No description provided.
The interaction of 1.0-, 1.25-, and 2.0-Bev antiprotons with protons has been studied with the aid of a 4π solid-angle scintillation-counter detector system. The measured total cross sections at the above energies are 100, 89, and 80 mb, respectively. At each energy, the charge-exchange cross section is approximately 5 mb. The total elastic cross sections are 33, 28, and 25 mb, respectively, at the three energies. The angular distribution of elastic scattering has been fitted with a simple optical-model calculation.
No description provided.
No description provided.
No description provided.