The charge distribution of multifragments of the 208 Pb beam at 160A GeV in nuclear emulsion has been fitted with a power-law. The moments of the resulting nuclear charged fragment distribution dis provide strong evidence that nuclear matter possesses critical point observables. The values of the critical exponents (γ, β and τ) extracted from the 208 Pb beam are compared with the values for the 197 Au beams at 10.6A GeV and 1A GeV. These values are very close to those for a liquid-gas system.
No description provided.
In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.4$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.2$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.6$.
Intranuclear cascading mechanism one of the important non-linear effects in high energy nucleusnucleus collisions is investigated. The data on multiplicity (ns) and pseudorapidity (η) distributions of shower particles produced by32S and16O at 200A GeV,16O at 60A GeV,28Si at 14.5A GeV and He at ≈140A GeV are presented and compared with the string model VENUS, which takes into account the cascade interactions of secondary particles. The effect of the intranuclear collisions on the distributions of <η> versus
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Multiplicity and angular distributions of shower, grey, and black particles produced in the interactions of S32 at 200A GeV, O16 at 200 and 60A GeV, and He4 at ∼140A GeV in emulsion are compared with the predictions of a Monte Carlo code which takes into account the internuclear cascading. The correlations between the various parameters belonging to the same or to the different kinds of particles are discussed. The data on shower and grey particles from all the beams are well described by the code. However, the black prong data show a significant departure from this model.
No description provided.
No description provided.
No description provided.
We report the measurements on partial production cross sections of the multiple helium fragments emitted in the interactions of Si28 ions at 14.5A GeV in nuclear emulsion. Interaction mean free paths of the helium fragments have been investigated on the basis of helium multiplicity and size of the target nucleus as a function of the distance from their production points. Multiplicity scaling in the produced helium fragments is also observed.
FIRST REACTION RESPECTS CENTRAL, SECOND - PERIPHERAL INELASTIC INTERACTION.
FIRST REACTION RESPECTS CENTRAL, SECOND - PERIPHERAL INTERACTION. THIRD REACTION RESPECT 0HE PRODUCTION.
MULT(FRAGT) IS AVERAGED NUMBER OF HEAVY TRACKS FROM THE TARGET NUCLEUS, MULT(SHOWER) IS AVERAGED NUMBER OF MINIMUM IONIZING SHOWER TRACKS WHICH INCLUDED THE NUMBER OF SINGLY CHARGED PROJECTILE PROTON TRACKS.
Partial production cross sections of projectile alpha fragments produced in high-energy interactions of 16 O and 32 S at 200 GeV/n and 16 O at 60 GeV/n in emulsion are studied. Evidence of multiplicity scaling of such produced fragments is presented in the energy range 2–200 GeV/n for various projectiles.
No description provided.
No description provided.
No description provided.
We compute the multifractal moments Gq in terms of a new scaled variable X suggested by Bialas and Gazdzicki to study the dynamical fluctuations of particles produced in the interactions of Au197 at 10.6A GeV with nuclear emulsion. An asymptotic power-law dependence of the moments on the bin size δX has been observed in pseudorapidity (η), azimuthal (φ), and η-φ phase spaces. The dynamical values of the generalized dimensions are determined in all the phase spaces. The dynamical properties of the produced particles are mapped onto smooth multifractal spectra f(Δαq) by excluding the statistical contribution. The Au197 results are compared with a Si28 ion at 14.5A GeV and a S32 beam at 200A GeV.
No description provided.
Pseudorapidity-interval dependence of multiplicity distributions of shower particles produced in high energy interactions of protons at 800 GeV, 4 He at ≈ 11 A GeV, and 28 Si at 14.5 A GeV in nuclear emulsions have been investigated. The multiplicity distributions and correlated moments are parametrised successfully in terms of a negative binomial distribution (NBD). The heavy-ion data for NBD agree well with the predictions of the multistring Monte Carlo code VENUS.
No description provided.
No description provided.
No description provided.
We report the multiplicity and angular distributions of the low energy target-associated particles from 32S and 16O induced reactions at 200 GeV/nucleon and 16O induced reactions at 60 GeV/nucleon in emulsion. The results are compared with the Monte-Carlo Code VENUS.
No description provided.
No description provided.
THE FORWARD AND BACKWARD HEMISPHERE ARE DEFINED AS MULT(Q=FORWARD) WHEN COS(THETA) > 0 AND MULT(Q=BACKWARD) WHEN COS(THETA) < 0.