Production of $pi^0$ Mesons by gamma-Rays on Hydrogen

Silverman, A. ; Stearns, M. ;
Phys.Rev. 88 (1952) 1225-1230, 1952.
Inspire Record 944938 DOI 10.17182/hepdata.26460

The production of π∘ mesons in the reaction γ+p→π∘+p is investigated as a function of the incident γ-ray energy in the region from 200 Mev to 300 Mev. For the π∘ emitted at approximately 90° laboratory angle, the differential cross section can be represented by (dσπ∘dΩ)π2=C(K−145)1.9±0.4, where K= energy of incident γ-ray in Mev. The approximate threshold for the reaction is 145 Mev. The ratio of the cross section at 60° laboratory angle to that at 90° laboratory angle, for γ-rays between 250 Mev and 300 Mev, is 1.45±0.25.

1 data table

No description provided.


Scattering of 151- and 188-Mev Positive Pions by Protons

Homa, George ; Goldhaber, Gerson ; Lederman, Leon M. ;
Phys.Rev. 93 (1954) 554-561, 1954.
Inspire Record 944934 DOI 10.17182/hepdata.26417

A beam of ∼200-Mev π+ mesons was defined inside the vacuum chamber of the Nevis Cyclotron. Nuclear emulsions were exposed to a flux of about 104 mesons/cm2. The plates were scanned for pion-hydrogen scatterings and 103 such events were observed in two interaction energies, 151±7 Mev and 188±8 Mev. We obtain total cross sections of 152±31 and 159±34×10−27 cm2, respectively. The data suggest that the angular distribution changes from backwards peaked to almost symmetric over this energy interval. Our observations are not in agreement with the hypothesis of a P32-wave resonance in this energy region. The best fit to the combined results includes a D-wave contribution of -5.4°, although satisfactory agreement may be obtained with only S and P waves.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).

Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).


Proton-proton interactions at 5.3 BeV

Wright, Robert W. ; Saphir, George ; Powell, Wilson M. ; et al.
Phys.Rev. 100 (1955) 1802, 1955.
Inspire Record 1188071 DOI 10.17182/hepdata.26941

None

1 data table

No description provided.


Total p-p and 'p-n' Cross Sections at Cosmotron Energies

Chen, Francis F. ; Leavitt, Christopher P. ; Shapiro, Anatole M. ;
Phys.Rev. 103 (1956) 211-225, 1956.
Inspire Record 46809 DOI 10.17182/hepdata.828

The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.

4 data tables

No description provided.

No description provided.

More…

p-p Interactions at 3 Bev

Cester, R. ; Hoang, T.F. ; Kernan, A. ;
Phys.Rev. 103 (1956) 1443-1449, 1956.
Inspire Record 945004 DOI 10.17182/hepdata.26958

Interactions initiated by 3-Bev protons of the Brookhaven Cosmotron were studied by photoemulsion technique. With appropriate criteria, 115 events are attributed to interactions of the incident beam protons with hydrogen nuclei (∼55%) and with bound protons of other nuclei (∼45%). A detailed analysis allowed the subdivision of the 115 events in categories, according to the number of π mesons (N>~0) produced in the collision. The ratio of elastic scattering to the total number of events was estimated to be σelσtotal=0.20−0.07+0.04. The observed cross section for pure elastic scattering is σel=8.9±1.0 mb. The percentages of single, double, triple, and quadruple π-meson production are respectively: 34−20+22; 35.6−23+20; 9.6−4+6; ∼1.0+3.5. Among the 20 most probable cases of single π-meson production—the estimated ratio of π+ to π0 is σπ+σπ0=5.3−1.4+0.3. The experimental results are not in agreement with the Fermi statistical-model theory (in particular the lower limit for the experimental ratio of triple to single production is given by σ3σ1>∼110 in contrast with the predicted ratio σ3σ1=167) but are not inconsistent with the Peaslee excited-state-model theory.

1 data table

No description provided.


Cross Sections for Antiprotons in Hydrogen, Beryllium, Carbon, and Lead

Cork, Bruce ; Lambertson, Glen R. ; Piccioni, Oreste ; et al.
Phys.Rev. 107 (1957) 248-256, 1957.
Inspire Record 944999 DOI 10.17182/hepdata.26942

A strong-focusing momentum channel has been arranged to form a beam from antiprotons produced by 6.0-Bev protons striking an internal target of the Bevatron. The channel consists of five 4-inch-diameter magnetic quadrupole lenses and two deflecting magnets adjusted to give a ±5% momentum interval. The antiprotons were selected from a large background of mesons by a scintillation counter telescope with a time-of-flight coincidence circuit having a resolution of ±2×10−9 second. This system allowed detection of approximately 400 antiprotons per hour. With a liquid hydrogen attenuator, the total antiproton-proton cross section at four different energies, 190, 300, 500, and 700 Mev, has been observed to be 135, 104, 97, and 94 mb, respectively. Also, the total cross sections for antiprotons incident on Be and C have been measured at two energies. The inelastic cross sections for carbon have been measured by observing the pulse heights produced by the interactions in a target of liquid scintillator. To measure the inelastic cross section for a high-Z element, lead wafers were immersed in the liquid scintillator, and to select inelastic events the pulse heights were measured.

4 data tables
More…

Elastic Proton-Proton Scattering at 2.24, 4.40, and 6.15 Bev

Cork, Bruce ; Wenzel, William A. ; Causey, Charles W. ;
Phys.Rev. 107 (1957) 859-867, 1957.
Inspire Record 944998 DOI 10.17182/hepdata.26883

Protons of the internal circulating beam of the Bevatron were scattered in a polyethylene target. Both scattered and recoil protons were detected by scintillation counters at angles which define elastic proton-proton events. An internal counter was located within a few inches of the beam to permit measurements at laboratory scattering angles as low as 2°. Absolute values are based on the calibration of the induction electrode that monitors the circulating beam. Total elastic cross sections obtained by integrating the differential spectra are 17, 10, and 8 mb at 2.24, 4.40, and 6.15 Bev, respectively. The experimental angular distributions are consistent with the prediction of a simple optical model with a complex index of refraction at short range.

1 data table

'ALL'.


pi--p Elastic Scattering at 1.44 Bev

Chretien, M. ; Leitner, J. ; Samios, N.P. ; et al.
Phys.Rev. 108 (1957) 383-389, 1957.
Inspire Record 45962 DOI 10.17182/hepdata.26863

An investigation of π−+p elastic scattering, made in a liquid propane bubble chamber, is reported. Identification of events is made on the basis of kinematics. The problem of contamination by pion scattering from protons bound in carbon is considered in some detail; it is shown that the latter requires a correction of only 4±2.5% of the total number of events. The angular distribution is presented. It shows a large diffraction peak at small angles and an approximately isotropic plateau over the backward hemisphere. The forward peak is fitted to a black-sphere diffraction pattern with a radius of (1.08±0.06)×10−13 cm. The total elastic cross section is found to be σe=10.1±0.80 mb.

1 data table

No description provided.


Photoproduction of pi+ Mesons from Hydrogen in the Region 350-900 Mev

Heinberg, M. ; McClelland, W.M. ; Turkot, F. ; et al.
Phys.Rev. 110 (1958) 1211-1212, 1958.
Inspire Record 46812 DOI 10.17182/hepdata.26860

None

1 data table

No description provided.


Photoproduction of Positive Pions from Protons

Uretsky, Jack L. ; Kenney, Robert W. ; Knapp, Edward A. ; et al.
Phys.Rev.Lett. 1 (1958) 12-14, 1958.
Inspire Record 944927 DOI 10.17182/hepdata.21871

None

2 data tables

No description provided.

No description provided.