A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 38.6 inverse femtobarns. These data are combined with the data collected at center-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 inverse femtobarns, respectively. All observations are consistent with the expectations for the standard model Higgs boson.
Observed and expected likelihood scans $f_{a3}\cos\phi_{a3}$. See Section 2 of the paper for more details.
Observed and expected likelihood scans $f_{a2}\cos\phi_{a2}$. See Section 2 of the paper for more details.
Observed and expected likelihood scans $f_{\Lambda1}\cos\phi_{\Lambda1}$. See Section 2 of the paper for more details.
Four-lepton production in proton-proton collisions, pp to (Z/gamma*)(Z/gamma*) to l+l-l'+l'-, where l, l' = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.6 inverse femtobarns. The ZZ production cross section, sigma(pp to ZZ) = 14.6 +1.9/-1.8 (stat) +0.5/-0.3 (syst) +/- 0.2 (theo) +/- 0.4 (lumi) pb, is measured for events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 < m[l+l-], m[l'+l'-] < 120 GeV. The Z boson branching fraction to four leptons is measured to be B(Z to l+l-l'+l'-) = 4.9 +0.8/-0.7 (stat) +0.3/-0.2 (syst) +0.2/-0.1 (theo) +/- 0.1 (lumi) x E-6 for the four-lepton invariant mass in the range 80 < m[l+l-l'+l'-] < 100 GeV and dilepton mass m[l+l-] > 4 GeV for all opposite-sign, same-flavor lepton pairs. The results are in agreement with standard model predictions.
The (P P to Z Z to l+l-l'+l'-) fiducial cross section. The first systematic uncertainty is detector systematics, the second is luminosity uncertainty. The theoretical prediction is POWHEG generated at NLO plus the gluon-gluon initial state contribution from MCFM, using NNPDF3.0 PDFs and scales mu_F = mu_R = 0.5m[l+l-l'+l'-].
The (P P to Z to l+l-l'+l'-) fiducial cross section. The first systematic uncertainty is detector systematics, the second is luminosity uncertainty. The theoretical prediction is POWHEG generated at NLO using NNPDF3.0 PDFs and scales mu_F = mu_R = m[l+l-l'+l'-].
The total (P P to Z) cross section times the (Z to l+l-l'+l'-) branching ratio. The first systematic uncertainty is detector systematics, the second is theoretical uncertainty, and the third is luminosity uncertainty.
Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.
Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.
Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.
Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.
The MINERvA collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5 - 50 GeV. Good agreement is found between the data and predicted ratios, based on charged-lepton nucleus scattering, at medium x and low neutrino energies. However, the data rate appears depleted in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high neutrino energy , is consistent with previous MINERvA observations and with the predicted onset of nuclear shadowing with the the axial-vector current in neutrino scattering.
Ratio of the total DIS cross section on C to CH as a function of $E_\nu$.
Statistical error matrix of the ratio of the total DIS cross section on C to CH as a function of $E_\nu$.
Systematic error matrix of the ratio of the total DIS cross section on C to CH as a function of $E_\nu$.
Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.
Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.
A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair (ll gamma). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120 < m[ll gamma] < 150 GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H to gamma* gamma to ll gamma, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with m[H] = 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 (5.9 +2.8/-1.8) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H to J/Psi gamma for the 125 GeV Higgs boson is set at 1.5E-3.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
The cross section for the production of Z gamma in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 inverse femtobarns. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of Z Z gamma and Z gamma gamma are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson.
Inclusive fiducial cross sections in bins of pT(gamma) with statistical, systematic, and luminosity uncertainties, respectivley. Results are not divided by bin-widths. The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.
Fiducial cross sections with jet-veto in bins of pT(gamma) with statistical, systematic, and luminosity uncertainties, respectivley. Results are not divided by bin-widths. The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.
Ratio of fiducial cross section with jet-veto and the inclusive cross section in bins of pT(gamma). The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.
The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.
J/psi double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.
psi(2S) double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.
J/psi double-differential cross section times branching fraction and the corresponding scaling factors to obtain the cross sections for different polarization scenarios (azimuthal polarization parameter in the center of mass helicity frame lambda_theta^HX = +1, -1, +0.1) as a function of pT for |y| < 1.2.
The ratio of the production cross sections times branching fractions (sigma(Bc+) B(Bc+ to J/psi pi+))/ (sigma(B+) B(B+ to J/psi K+)) is studied in proton-proton collisions at a center-of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires Bc+/- and B+/- mesons with transverse momentum pt > 15 GeV and rapidity abs(y) < 1.6. The data sample corresponds to an integrated luminosity of 5.1 inverse femtobarns. The ratio is determined to be [0.48 +/- 0.05 (stat) +/- 0.03 (syst) +/- 0.05 (tau_{Bc})]% The J/psi pi+/- pi+/- pi-/+ decay mode is also observed in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions B(Bc+/- to J/psi pi+/- pi+/- pi-/+) / B(Bc+/- to J/psi pi+/-) is measured to be 2.55 +/- 0.80 (stat) +/- 0.33 (syst) +0.04/-0.01 (tau[Bc+]), consistent with the previous LHCb result.
The ratio of the production cross sections times branching fractions of $B_c^\pm\to J/\psi\pi^\pm$ and $B^\pm\to J/\psi K^\pm$ is measured in the kinematic region $p_T$> 15 GeV and |y| < 1.6. Beside the statistical and systematic errors, an uncertainty associated to the $B_c^{\pm}$ lifetime is quoted as a separate third error. The $B_c^\pm\to J/\psi\pi^\pm$ reconstruction efficiency has a dependence on the $B_c^\pm$ lifetime. Recently LHCb published a more precise $B_c^\pm$ lifetime measurement, which is significantly higher than the previous world average (PDG 2012). To determine the systematic uncertainty associated with the uncertainty in the $B_c^\pm$ lifetime, the efficiency is evaluated while changing the $B_c^\pm$ lifetime in the simulation to cover the range from the world average minus its one standard deviation uncertainty, to the new LHCb measurement. The resulting variation in the ratio is quoted separately as a lifetime systematic uncertainty ($\tau_{Bc}$). Charge conjugation is implied in the table.
To determine the systematic uncertainty in the ratio of branching fractions associated with the uncertainty in the $B_c^\pm$ lifetime, the efficiency is evaluated while changing the $B_c^\pm$ lifetime in the simulation to cover the range from the world average minus its one standard deviation uncertainty, to the new LHCb measurement. The resulting variation in the ratio is quoted separately as a lifetime systematic uncertainty ($\tau_{Bc}$). Charge conjugation is implied in the table.
Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.