Measurement of W$\gamma$ production cross section in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on effective field theory coefficients

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 126 (2021) 252002, 2021.
Inspire Record 1844754 DOI 10.17182/hepdata.102462

A fiducial cross section for W$\gamma$ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb$^{-1}$ of data collected using the CMS detector at the LHC. The W $\to$ e$\nu$ and $\mu\nu$ decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.

4 data tables

The measured Wgamma fiducial cross section and corresponding theoretical predictions from MadGraph5_aMC@NLO and POWHEG. The MadGraph5_aMC@NLO prediction includes 0 and 1 jets in the matrix element at NLO in QCD. The POWHEG prediction uses the C-NLO method described in https://arxiv.org/abs/1408.5766. The cross section is measured in a fiducial region defined with isolated prompt photons and isolated prompt dressed leptons (electrons and muons). A lepton or photon is considered isolated if the pt sum of all stable particles within Delta R = 0.4, divided by the pt of the lepton or photon, is less than 0.5. A lepton is considered prompt if it originates from the hard process or from the decay of a tau lepton that originates from the hard process; a photon is considered prompt if it originates from the hard process or an FSR or ISR process involving a particle that originates from the hard process. A lepton is dressed by adding to its four-momentum the four-momenta of all photons within DeltaR = 0.1; this procedure is intended to restore the lepton to its pre-FSR state. The fiducial region kinematic requirements are: photon and lepton |eta|<2.5 and pt > 25 GeV, and DeltaR(lepton,photon) > 0.5.

Data and SM expected event yields corresponding to photon pt distribution used to extract aTGC limits.

95% CL limits on effective field theory parameters in Wgamma events. No unitarity regularisation scheme is applied. All parameters are fixed to their SM values except the one that is fitted.

More…

Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2018) 117, 2018.
Inspire Record 1674077 DOI 10.17182/hepdata.85698

A measurement is presented of the associated production of a single top quark and a W boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV by the CMS Collaboration at the CERN LHC. The data collected corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed using events with one electron and one muon in the final state along with at least one jet originated from a bottom quark. A multivariate discriminant, exploiting the kinematic properties of the events, is used to separate the signal from the dominant $\mathrm{t\overline{t}}$ background. The measured cross section of 63.1 $\pm$ 1.8 (stat) $\pm$ 6.4 (syst) $\pm$ 2.1 (lumi) pb is in agreement with the standard model expectation.

2 data tables

The measured total cross sections based on the $\rm{e}^\pm \mu^\mp$ decay channel. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

Summary of the individual contributions to the uncertainty in the $\sigma_{tW}$ measurement.


Measurement of the inclusive $\mathrm{t}\overline{\mathrm{t}}$ cross section in pp collisions at $\sqrt{s} =$ 5.02 TeV using final states with at least one charged lepton

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2018) 115, 2018.
Inspire Record 1635271 DOI 10.17182/hepdata.81690

The top quark pair production cross section ($\sigma_{\mathrm{t}\overline{\mathrm{t}}}$) is measured for the first time in pp collisions at a center-of-mass energy of 5.02 TeV. The data were collected by the CMS experiment at the LHC and correspond to an integrated luminosity of 27.4 pb$^{-1}$. The measurement is performed by analyzing events with at least one charged lepton. The measured cross section is $ \sigma_{\mathrm{t}\overline{\mathrm{t}}} = 69.5 \pm 6.1$ (stat) $\pm 5.6$ (syst) $\pm 1.6$ (lumi) pb, with a total relative uncertainty of 12%. The result is in agreement with the expectation from the standard model. The impact of the presented measurement on the determination of the gluon distribution function is investigated.

15 data tables

The measured fiducial cross sections in the $\ell$+jets and dilepton ($\rm{e}^\pm \mu^\mp$ or $\mu^\pm \mu^\mp$) decay channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

The measured total cross sections based on the $\ell$+jets (left), $\rm{e}^\pm \mu^\mp$ (middle) and $\mu^\pm \mu^\mp$ (right) decay channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

The measured total cross section in the combined $\ell$+jets and dilepton ($\rm{e}^\pm \mu^\mp$ or $\mu^\pm \mu^\mp$) decay channels. The weights of the individual measurements are 81.8% for $\ell$+jets, 13.5% for $\rm{e}^\pm \mu^\mp$, and 4.7% for $\mu^\pm \mu^\mp$ channels. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

More…