Version 3
Measurement of the inclusive and differential $\mathrm{t\bar{t}}\gamma$ cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 091, 2022.
Inspire Record 2013377 DOI 10.17182/hepdata.113657

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.

63 data tables match query

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $e\mu$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $ee$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $\mu\mu$ channel, after the fit to the data.

More…

Version 2
Measurement of the inclusive and differential $\mathrm{t\overline{t}}\gamma$ cross sections in the single-lepton channel and EFT interpretation at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 180, 2021.
Inspire Record 1876579 DOI 10.17182/hepdata.102876

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.

80 data tables match query

Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.

Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.

Distribution of $m_{T}(W)$ in the $N_{jet}\geq 3$ signal region.

More…

Measurement of the top quark mass using proton-proton data at ${\sqrt{(s)}}$ = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 072004, 2016.
Inspire Record 1393269 DOI 10.17182/hepdata.71988

A new set of measurements of the top quark mass are presented, based on the proton-proton data recorded by the CMS experiment at the LHC at sqrt(s) = 8 TeV corresponding to a luminosity of 19.7 inverse femtobarns. The top quark mass is measured using the lepton + jets, all-jets and dilepton decay channels, giving values of 172.35 +/- 0.16 (stat) +/- 0.48 (syst) GeV, 172.32 +/- 0.25 (stat) +/- 0.59 (syst) GeV, and 172.82 +/- 0.19 (stat) +/- 1.22 (syst) GeV, respectively. When combined with the published CMS results at sqrt(s) = 7 TeV, they provide a top quark mass measurement of 172.44 +/- 0.13 (stat) +/- 0.47 (syst) GeV. The top quark mass is also studied as a function of the event kinematical properties in the lepton + jets decay channel. No indications of a kinematic bias are observed and the collision data are consistent with a range of predictions from current theoretical models of t t-bar production.

9 data tables match query

Measurement of $m_{t}$ as a function of the transverse momentum of the hadronically decaying top quark.

Measurement of $m_{t}$ as a function of the invariant mass of the tt¯ system.

Measurement of $m_{t}$ as a function of the transverse momentum of the tt¯ system.

More…

Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 02 (2014) 024, 2014.
Inspire Record 1275617 DOI 10.17182/hepdata.64868

The top-antitop quark (t t-bar) production cross section is measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 inverse femtobarns. The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model.

2 data tables match query

The total efficiencies etotal, i.e. the products of event acceptance, selection efficiency and branching fraction for the respective TOP TOPBAR final states, as estimated from simulation for a top-quark mass of 172.5 GeV, and the measured TOP TOPBAR production cross sections, where the uncertainties are from statistical, systematic and integrated luminosity components, respectively.

The TOP TOPBAR cross section obtained by combining all final states.


Measurement of the ttbbar production cross section using events in the e mu final state in pp collisions at sqrt(s)=13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 172, 2017.
Inspire Record 1497736 DOI 10.17182/hepdata.76735

The cross section of top quark-antiquark pair production in proton-proton collisions at sqrt(s) = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 inverse femtobarns. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.

3 data tables match query

Summary of the individual contributions to the uncertainty in the $\sigma_{t\bar{t}}$ measurement.

Measurement of the $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV.

Number of dilepton events obtained after applying the full selection. The results are given for the individual sources of background, $t\bar{t}$ signal with a top quark mass of 172.5 GeV and $\sigma_{t\bar{t}}$ = 832 +/- 46 pb, and data. The uncertainties correspond to statistical and systematic components.


Measurements of normalized differential cross-sections for ttbar production in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 90 (2014) 072004, 2014.
Inspire Record 1304289 DOI 10.17182/hepdata.67128

Measurements of normalized differential cross-sections for top-quark pair production are presented as a~function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the $t\bar{t}$ system, in proton--proton collisions at a~center-of-mass energy of $\sqrt{s}$ = 7 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$, recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a~$b$-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a~wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the $t\bar{t}$ system and of the top-quark transverse momentum. The measurements can also discriminate among different sets of parton distribution functions.

0 data tables match query

Measurements of the t t-bar charge asymmetry using the dilepton decay channel in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2014) 191, 2014.
Inspire Record 1281538 DOI 10.17182/hepdata.64729

The t t-bar charge asymmetry in proton-proton collisions at sqrt(s) = 7 TeV is measured using the dilepton decay channel (ee, e mu, or mu mu). The data correspond to a total integrated luminosity of 5.0 inverse femtobarns, collected by the CMS experiment at the LHC. The t t-bar and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be Ac = -0.010 +/- 0.017 (stat.) +/- 0.008 (syst.) and Ac[lep] = 0.009 +/- 0.010 (stat.) +/- 0.006 (syst). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the t t-bar system. All measurements are consistent with the expectations of the standard model.

4 data tables match query

The unfolded ASYMC and ASYMC(LEPTON) measurements.

Measurements of the unfolded ASYMC(LEPTON) values in bins of M(TOP TOPBAR).

Measurements of the unfolded ASYMC(LEPTON) values in bins of ABS(YRAP(TOP TOPBAR)).

More…

Measurement of the differential cross sections for top quark pair production as a function of kinematic event variables in pp collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 052006, 2016.
Inspire Record 1473674 DOI 10.17182/hepdata.74124

Measurements are reported of the normalized differential cross sections for top quark pair production with respect to four kinematic event variables: the missing transverse energy; the scalar sum of the jet transverse momentum (pT); the scalar sum of the pT of all objects in the event; and the pT of leptonically decaying W bosons from top quark decays. The data sample, collected using the CMS detector at the LHC, consists of 5.0 inverse femtobarns of proton-proton collisions at sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. Top quark pair events containing one electron or muon are selected. The results are presented after correcting for detector effects to allow direct comparison with theoretical predictions. No significant deviations from the predictions of several standard model event simulation generators are observed.

16 data tables match query

Normalized $t\bar{t}$ differential cross section measurements with respect to the $E^{miss}_{T}$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

Normalized $t\bar{t}$ differential cross section measurements with respect to the $H_T$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

Normalized $t\bar{t}$ differential cross section measurements with respect to the $S_T$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

More…

Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton+jets final states produced in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 762 (2016) 512-534, 2016.
Inspire Record 1466294 DOI 10.17182/hepdata.74337

The W boson helicity fractions from top quark decays in t t-bar events are measured using data from proton-proton collisions at a centre-of-mass energy of 8 TeV. The data were collected in 2012 with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 inverse femtobarns. Events are reconstructed with either one muon or one electron, along with four jets in the final state, with two of the jets being identified as originating from b quarks. The measured helicity fractions from both channels are combined, yielding F[0] = 0.681 +/- 0.012 (stat) +/- 0.023 (syst), F[L] = 0.323 +/- 0.008 (stat) +/- 0.014 (syst), and F[R] = -0.004 +/- 0.005 (stat) +/- 0.014 (syst) for the longitudinal, left-, and right-handed components of the helicity, respectively. These measurements of the W boson helicity fractions are the most accurate to date and they agree with the predictions from the standard model.

3 data tables match query

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from electron+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.950.

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from muon+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.957.

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from lepton+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.959, and total correlation, considering both statistical and systematic uncertainties, of -0.87.


First Measurement of the Cross Section for Top-Quark Pair Production in Proton-Proton Collisions at sqrt(s)=7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Lett.B 695 (2011) 424-443, 2011.
Inspire Record 874738 DOI 10.17182/hepdata.63811

The first measurement of the cross section for top-quark pair production in pp collisions at the LHC at center-of-mass energy sqrt(s)= 7 TeV has been performed using 3.1 {\pm} 0.3 inverse pb of data recorded by the CMS detector. This result utilizes the final state with two isolated, highly energetic charged leptons, large missing transverse energy, and two or more jets. Backgrounds from Drell-Yan and non-W/Z boson production are estimated from data. Eleven events are observed in the data with 2.1 {\pm} 1.0 events expected from background. The measured cross section is 194 {\pm} 72 (stat.) {\pm} 24 (syst.) {\pm} 21 (lumi.) pb, consistent with next-to-leading order predictions.

1 data table match query

Total cross section. The second systematic error represents the uncertainty on the luminosity.