The production of isolated photons in PbPb and pp collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2020) 116, 2020.
Inspire Record 1788620 DOI 10.17182/hepdata.93877

The transverse energy ($E_\mathrm{T}^{\gamma}$) spectra of photons isolated from other particles are measured using proton-proton (pp) and lead-lead (PbPb) collisions at the LHC at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV with integrated luminosities of 27.4 pb$^{-1}$and 404 $\mu$b$^{-1}$ for pp and PbPb data, respectively. The results are presented for photons with 25 $<$ $E_\mathrm{T}^{\gamma}$ $<$ 200 GeV in the pseudorapidity range $|\eta|$ $<$ 1.44, and for different centrality intervals for PbPb collisions. Photon production in PbPb collisions is consistent with that in pp collisions scaled by the number of binary nucleon-nucleon collisions, demonstrating that photons do not interact with the quark-gluon plasma. Therefore, isolated photons can provide information about the initial energy of the associated parton in photon+jet measurements. The results are compared with predictions from the next-to-leading-order JETPHOX generator for different parton distribution functions (PDFs) and nuclear PDFs (nPDFs). The comparisons can help to constrain the nPDFs global fits.

4 data tables match query

Isolated photon spectra measured as a function of $E_{T}^{\gamma}$ for 0–10%, 10–30%, 30– 50%, 50–100%, and 0–100% PbPb collisions (scaled by $T_{AA}$) at 5.02TeV.

Isolated photon cross section measured as a function of $E_{T}^{\gamma}$ in pp collisions at 5.02TeV.

Nuclear modification factors $R_{AA}$ as a function of $E_{T}^{\gamma}$ measured in the 0–10%, 10–30%, 30–50%, and 50–100% centrality ranges in PbPb.

More…

Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 752, 2020.
Inspire Record 1777617 DOI 10.17182/hepdata.90837

A data sample of events from proton-proton collisions with at least two jets, and two isolated same-sign or three or more charged leptons, is studied in a search for signatures of new physics phenomena. The data correspond to an integrated luminosity of 137 fb$^{-1}$ at a center-of-mass energy of 13 TeV, collected in 2016-2018 by the CMS experiment at the LHC. The search is performed using a total of 168 signal regions defined using several kinematic variables. The properties of the events are found to be consistent with the expectations from standard model processes. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos or squarks for various decay scenarios in the context of supersymmetric models conserving or violating R parity. The observed lower mass limits are as large as 2.1 TeV for gluinos and 0.9 TeV for top and bottom squarks. To facilitate reinterpretations, model-independent limits are provided in a set of simplified signal regions.

16 data tables match query

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

Exclusion regions at 95% CL in the $m_{\tilde{\chi}_1^0}$ versus $m_{\tilde{g}}$ plane for the T1tttt (upper left) and T5ttbbWW (upper right) models, with off-shell third-generation squarks, and the T5tttt (lower left) and T5ttcc (lower right) models, with on-shell third-generation squarks. For the T5ttbbWW model, $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_1^0} + 5 GeV$, for the T5tttt model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_t$, and for the T5ttcc model, $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = 20 GeV$ and the decay proceeds through $\tilde{t} \to c \tilde{\chi}_1^0$. The right-hand side color scale indicates the excluded cross section values for a given point in the SUSY particle mass plane. The solid black curves represent the observed exclusion limits assuming the approximate-NNLO+NNLL cross sections (thick line), or their variations of $\pm 1$ standard deviations (s.d.) (thin lines). The dashed red curves show the expected limits with the corresponding $\pm 1$ s.d. and $\pm 2$ s.d. uncertainties. Excluded regions are to the left and below the limit curves.

More…

Observation of the production of three massive gauge bosons at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 151802, 2020.
Inspire Record 1802096 DOI 10.17182/hepdata.95926

The first observation is reported of the combined production of three massive gauge bosons (VVV with V = W,Z) in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis is based on a data sample recorded by the CMS experiment at the CERN LHC corresponding to an integrated luminosity of 137 fb$^{-1}$. The searches for individual WWW, WWZ, WZZ, and ZZZ production are performed in final states with three, four, five, and six leptons (electrons or muons), or with two same-sign leptons plus one or two jets. The observed (expected) significance of the combined VVV production signal is 5.7 (5.9) standard deviations and the corresponding measured cross section relative to the standard model prediction is 1.02 $^{+0.26}_{-0.23}$. The significances of the individual WWW and WWZ production are 3.3 and 3.4 standard deviations, respectively. Measured production cross sections for the individual triboson processes are also reported.

2 data tables match query

Comparison of the observed numbers of events to the predicted yields after fitting. For the WWW and WWZ channels, the results from the BDT-based selections are used. The VVV signal is shown stacked on top of the total background. The points represent the data and the error bars show the statistical uncertainties.

Comparison of the observed numbers of events to the predicted yields after fitting. For the WWW and WWZ channels, the results from the BDT-based selections are used. The VVV signal is shown stacked on top of the total background. The points represent the data and the error bars show the statistical uncertainties.


Investigation into the event-activity dependence of $\Upsilon$(nS) relative production in proton-proton collisions at $\sqrt{s} = $ 7 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 001, 2020.
Inspire Record 1805867 DOI 10.17182/hepdata.95684

The ratios of the production cross sections between the excited $\Upsilon$(2S) and $\Upsilon$(3S) mesons and the $\Upsilon$(1S) ground state, detected via their decay into two muons, are studied as a function of the number of charged particles in the event. The data are from proton-proton collisions at $\sqrt{s} =$ 7 TeV, corresponding to an integrated luminosity of 4.8 fb$^{-1}$, collected with the CMS detector at the LHC. Evidence of a decrease in these ratios as a function of the particle multiplicity is observed, more pronounced at low transverse momentum $p_\mathrm{T}^{\mu\mu}$. For $\Upsilon$(nS) mesons with $p_\mathrm{T}^{\mu\mu}$ $\gt$ 7 GeV, where most of the data were collected, the correlation with multiplicity is studied as a function of the underlying event transverse sphericity and the number of particles in a cone around the $\Upsilon$(nS) direction. The ratios are found to be multiplicity independent for jet-like events. The mean $p_\mathrm{T}^{\mu\mu}$ values for the $\Upsilon$(nS) states as a function of particle multiplicity are also measured and found to grow more steeply as their mass increases.

3 data tables match query

Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of "forward" track multiplicity $N_{track}^{\Delta\phi}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$. Forward tracks are those with momentum direction in $\Delta\phi\,<\,\pi/3$ w.r.t. the $\Upsilon(n$S$)$ momentum direction.

Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of "transverse" track multiplicity $N_{track}^{\Delta\phi}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$. Transverse tracks are those with momentum direction in $\pi/3\,<\,\Delta\phi\,<\,2\pi/3$ w.r.t. the $\Upsilon(n$S$)$ momentum direction.

Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of "backward" track multiplicity $N_{track}^{\Delta\phi}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$. Backward tracks are those with momentum direction in $\Delta\phi\,>\,2\pi/3$ w.r.t. the $\Upsilon(n$S$)$ momentum direction.


Measurement of CKM matrix elements in single top quark $t$-channel production in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 808 (2020) 135609, 2020.
Inspire Record 1792999 DOI 10.17182/hepdata.95117

The first direct, model-independent measurement is presented of the modulus of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_\mathrm{tb}|$, $|V_\mathrm{td}|$, and $|V_\mathrm{ts}|$, in final states enriched in single top quark $t$-channel events. The analysis uses proton-proton collision data from the LHC, collected during 2016 by the CMS experiment, at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Processes directly sensitive to these matrix elements are considered at both the production and decay vertices of the top quark. In the standard model hypothesis of CKM unitarity, a lower limit of $|V_\mathrm{tb}|$ $>$ 0.970 is measured at the 95% confidence level. Several theories beyond the standard model are considered, and by releasing all constraints among the involved parameters, the values $|V_\mathrm{tb}| =$ 0.988 $\pm$ 0.024, and $|V_\mathrm{td}|^2 + |V_\mathrm{ts}|^2 =$ 0.06 $\pm$ 0.06, where the uncertainties include both statistical and systematic components, are measured.

22 data tables match query

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

The $m_{W}^{T}$ distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b+STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

More…

Measurements of the W boson rapidity, helicity, double-differential cross sections, and charge asymmetry in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 092012, 2020.
Inspire Record 1810913 DOI 10.17182/hepdata.94180

The differential cross section and charge asymmetry for inclusive W boson production at $\sqrt{s} =$ 13 TeV is measured for the two transverse polarization states as a function of the W boson absolute rapidity. The measurement uses events in which a W boson decays to a neutrino and either a muon or an electron. The data sample of proton-proton collisions recorded with the CMS detector at the LHC in 2016 corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross section and its value normalized to the total inclusive W boson production cross section are measured over the rapidity range $|y_\mathrm{W}|$ $\lt$ 2.5. In addition to the total fiducial cross section, the W boson double-differential cross section, d$^2\sigma$/d$p^\ell_\mathrm{T}$d$|\eta|$ and the charge asymmetry are measured as functions of the charged lepton transverse momentum and pseudorapidity. The precision of these measurements is used to constrain the parton distribution functions of the proton using the next-to-leading order NNPDF3.0 set.

64 data tables match query

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

More…

Search for a light charged Higgs boson in the H$^\pm$ $\to $ cs channel in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 072001, 2020.
Inspire Record 1796727 DOI 10.17182/hepdata.94261

A search is conducted for a low-mass charged Higgs boson produced in a top quark decay and subsequently decaying into a charm and a strange quark. The data sample was recorded in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS experiment at the LHC and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed in the process of top quark pair production, where one top quark decays to a bottom quark and a charged Higgs boson, and the other to a bottom quark and a W boson. With the W boson decaying to a charged lepton (electron or muon) and a neutrino, the final state comprises an isolated lepton, missing transverse momentum, and at least four jets, of which two are tagged as b jets. To enhance the search sensitivity, one of the jets originating from the charged Higgs boson is required to satisfy a charm tagging selection. No significant excess beyond standard model predictions is found in the dijet invariant mass distribution. An upper limit in the range 1.68-0.25% is set on the branching fraction of the top quark decay to the charged Higgs boson and bottom quark for a charged Higgs boson mass between 80 and 160 GeV.

3 data tables match query

Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) for the muon channel after the individual charm tagging categories have been combined.

Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) for the electron channel after the individual charm tagging categories have been combined.

Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) after the individual charm tagging categories and the muon and electron channels have been combined.


Search for a heavy resonance decaying to a top quark and a W boson at $\sqrt{s} =$ 13 TeV in the fully hadronic final state

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2021) 106, 2021.
Inspire Record 1860980 DOI 10.17182/hepdata.99692

A search for a heavy resonance decaying to a top quark and a W boson in the fully hadronic final state is presented. The analysis is performed using data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$ recorded by the CMS experiment at the LHC. The search is focused on heavy resonances, where the decay products of each top quark or W boson are expected to be reconstructed as a single, large-radius jet with a distinct substructure. The production of an excited bottom quark, b*, is used as a benchmark when setting limits on the cross section for a heavy resonance decaying to a top quark and a W boson. The hypotheses of b* quarks with left-handed, right-handed, and vector-like chiralities are excluded at 95% confidence level for masses below 2.6, 2.8, and 3.1 TeV, respectively. These are the most stringent limits on the b* quark mass to date, extending the previous best limits by almost a factor of two.

20 data tables match query

Upper limits on the product of the cross section and branching fraction at 95% CL for a left-handed b* quark as a function of b* quark mass.

Upper limits on the product of the cross section and branching fraction at 95% CL for a right-handed b* quark as a function of b* quark mass.

Upper limits on the product of the cross section and branching fraction at 95% CL for a vector-like b* quark as a function of b* quark mass.

More…

Angular analysis of the decay B$^+$ $\to$ K$^*$(892)$^+\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2021) 124, 2021.
Inspire Record 1826544 DOI 10.17182/hepdata.99387

Angular distributions of the decay B$^+$$\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s} =$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.

1 data table match query

The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.


Version 2
Search for disappearing tracks in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 806 (2020) 135502, 2020.
Inspire Record 1790827 DOI 10.17182/hepdata.95354

A search is presented for long-lived charged particles that decay within the volume of the silicon tracker of the CMS experiment. Such particles can produce events with an isolated track that is missing hits in the outermost layers of the silicon tracker, and is also associated with little energy deposited in the calorimeters and no hits in the muon detectors. The search for events with this "disappearing track" signature is performed in a sample of proton-proton collisions recorded by the CMS experiment at the LHC with a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 101 fb$^{-1}$ recorded in 2017 and 2018. The observation of 48 events is consistent with the estimated background of 47.8 $_{-2.3}^{+2.7}$ (stat) $\pm$ 8.1 (syst) events. Upper limits are set on chargino production in the context of an anomaly-mediated supersymmetry breaking model for purely wino and higgsino neutralino scenarios. At 95% confidence level, the first constraint is placed on chargino masses in the higgsino case, excluding below 750 (175) GeV for a lifetime of 3 (0.05) ns. In the wino case, the results of this search are combined with a previous CMS search to produce a result representing the complete LHC data set recorded in 2015-2018, the most stringent constraints to date. At 95% confidence level, chargino masses in the wino case are excluded below 884 (474) GeV for a lifetime of 3 (0.2) ns.

12 data tables match query

The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 0.3 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.

The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 3.3 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.

The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 33 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.

More…