Searches for physics beyond the standard model with the $M_\mathrm{T2}$ variable in hadronic final states with and without disappearing tracks in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 3, 2020.
Inspire Record 1753215 DOI 10.17182/hepdata.90834

Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb$^{-1}$. The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $M_\mathrm{T2}$ for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving $R$-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.

52 data tables

Definitions of super signal regions, along with predictions, observed data, and the observed 95% CL upper limits on the number of signal events contributing to each region ($N_{95}^\mathrm{max}$). The limits are given under assumptions of 0% and 15% for the uncertainty on the signal acceptance. All selection criteria as in the full analysis are applied. For regions with $N_\mathrm{j}=1$, $H_\mathrm{T}\equiv p_\mathrm{T}^\mathrm{jet}$.

Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks ($\tilde{g}\to q\bar{q}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q\bar{q}\tilde{\chi}_1^0$.

Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either a $\tilde{\chi}_2^0$ that decays to $Z\tilde{\chi}_1^0$ (1/3 of the time), or a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$ (2/3 of the time). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j V\tilde{\chi}_1^0$.

More…

Study of J/$\psi$ meson production from jet fragmentation in pp collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 804 (2020) 135409, 2020.
Inspire Record 1757506 DOI 10.17182/hepdata.90639

A study of the production of prompt J/$\psi$ mesons contained in jets in proton-proton collisions at $\sqrt{s} =$ 8 TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb$^{-1}$ collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/$\psi$ meson and the jet is used to test whether the J/$\psi$ meson is part of the jet. The analysis shows that most prompt J/$\psi$ mesons with energy above 15 GeV and rapidity $|y|<$ 1 are contained in jets with pseudorapidity $|\eta_{\text{jet}}|$ $<$ 1. The differential distributions of the probability to have a J/$\psi$ meson contained in a jet as a function of jet energy for a fixed J/$\psi$ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/$\psi$ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/$\psi$ production using nonrelativistic quantum chromodynamics.

6 data tables

Experimental Xi values and FJF predictions for the four NRQCD terms using BCKL LDME parameters

Experimental Xi values and FJF predictions for the four NRQCD terms using BK LDME parameters

Experimental Xi values and FJF predictions for the four NRQCD terms using BCKL LDME parameters

More…

Version 3
High precision measurements of Z boson production in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 127 (2021) 102002, 2021.
Inspire Record 1915909 DOI 10.17182/hepdata.95231

The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.

12 data tables

The v2 of Z bosons in PbPb collisions for various centrality bins.

The v2 of Z bosons in PbPb collisions for various centrality bins.

The v2 of Z bosons in PbPb collisions for various centrality bins.

More…

Version 4
Measurements of differential Z boson production cross sections in proton-proton collisions at $ \sqrt{s} $ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2019) 061, 2019.
Inspire Record 1753680 DOI 10.17182/hepdata.91215

Measurements are presented of the differential cross sections for Z bosons produced in proton-proton collisions at $\sqrt{s} =$ 13 TeV and decaying to muons and electrons. The data analyzed were collected in 2016 with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The measured fiducial inclusive product of cross section and branching fraction agrees with next-to-next-to-leading order quantum chromodynamics calculations. Differential cross sections of the transverse momentum $p_\mathrm{T}$, the optimized angular variable $\phi^*_\eta$, and the rapidity of lepton pairs are measured. The data are corrected for detector effects and compared to theoretical predictions using fixed order, resummed, and parton shower calculations. The uncertainties of the measured normalized cross sections are smaller than 0.5% for $\phi^*_\eta <$ 0.5 and for $p_\mathrm{T}^\mathrm{Z} <$ 50 GeV.

137 data tables

Summary of data, expected signal, and background yields after the full selection. The predicted signal yields are quoted using aMC@NLO simulation. The statistical uncertainties in the simulated samples are below 0.1%.

Summary of the systematic uncertainties for the inclusive fiducial cross section measurements.

The measured inclusive fiducial cross sections in the dimuon and dielectron final states. The combined measurement is also shown.

More…

Charged-particle angular correlations in XeXe collisions at $\sqrt{s_{_\mathrm{NN}}}=$ 5.44 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 100 (2019) 044902, 2019.
Inspire Record 1716441 DOI 10.17182/hepdata.88276

Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon pair of $ \sqrt{s_{_\mathrm{NN}}} =$ 5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total integrated luminosity of 3.42 $\mu$b$^{-1}$. The collective motion of the system formed in the collision is parameterized by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients $v_{2}$, $v_{3}$, and $v_{4}$ are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within a hydrodynamic picture, these methods have different sensitivities to non-collective and fluctuation effects. The dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are also compared to the experimental results. The observed angular correlations provide new constraints on the hydrodynamic description of heavy ion collisions.

24 data tables

Elliptic-flow coefficients $v_2$ based on the two-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.

Elliptic-flow coefficients $v_2$ based on the scalar-product technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 0.8$.

Elliptic-flow coefficients $v_2$ based on the four-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.

More…

Investigation into the event-activity dependence of $\Upsilon$(nS) relative production in proton-proton collisions at $\sqrt{s} = $ 7 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 001, 2020.
Inspire Record 1805867 DOI 10.17182/hepdata.95684

The ratios of the production cross sections between the excited $\Upsilon$(2S) and $\Upsilon$(3S) mesons and the $\Upsilon$(1S) ground state, detected via their decay into two muons, are studied as a function of the number of charged particles in the event. The data are from proton-proton collisions at $\sqrt{s} =$ 7 TeV, corresponding to an integrated luminosity of 4.8 fb$^{-1}$, collected with the CMS detector at the LHC. Evidence of a decrease in these ratios as a function of the particle multiplicity is observed, more pronounced at low transverse momentum $p_\mathrm{T}^{\mu\mu}$. For $\Upsilon$(nS) mesons with $p_\mathrm{T}^{\mu\mu}$ $\gt$ 7 GeV, where most of the data were collected, the correlation with multiplicity is studied as a function of the underlying event transverse sphericity and the number of particles in a cone around the $\Upsilon$(nS) direction. The ratios are found to be multiplicity independent for jet-like events. The mean $p_\mathrm{T}^{\mu\mu}$ values for the $\Upsilon$(nS) states as a function of particle multiplicity are also measured and found to grow more steeply as their mass increases.

30 data tables

The measured ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $p_T(\Upsilon(n$S$))>7\,GeV$ and $|y(\Upsilon(n$S$))| < 1.2$, as a function of track multiplicity $N_{track}$

The measured ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $p_T(\Upsilon(n$S$))>0\,GeV$ and $|y(\Upsilon(n$S$))| < 1.93$, as a function of track multiplicity $N_{track}$.

Mean $p_T$ values of the $\Upsilon(1$S$)$, $\Upsilon(2$S$)$, and $\Upsilon(3S)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$

More…

Measurement of b jet shapes in proton-proton collisions at $\sqrt{s} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 054, 2021.
Inspire Record 1798501 DOI 10.17182/hepdata.89876

We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb$^{-1}$. To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the PYTHIA and HERWIG++ event generators.

10 data tables

The charged particle yield distribution $Y(\Delta r)$ of inclusive jets with $p_T > 120$ GeV and $1< p^{\text{trk}}_T < 12$ GeV are presented as functions of $\Delta r$ for differential $p_{\text{T}}^{\text{trk}}$ bin.

The charged particle yield distribution $Y(\Delta r)$ of b jets with $p_T > 120$ GeV and $1< p^{\text{trk}}_T < 12$ GeV are presented as functions of $\Delta r$ for differential $p_{\text{T}}^{\text{trk}}$ bin.

Charged particle yield distributions $Y(\Delta r)$ of inclusive jets with $1 < p_{\text{T}}^{\text{trk}} < 12$ GeV are presented as functions of $\Delta r$.Inclusive jets with $p_T > 120$ GeV and charged particles with $1 < p^{\text{trk}}_{\text{T}} < 12$ GeV are used to construct the distributions as functions of $\Delta r$ differential $p_{\text{T}}^{\text{trk}}$ bins.

More…

Version 2
Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 056, 2020.
Inspire Record 1746445 DOI 10.17182/hepdata.91636

A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb$^{-1}$, collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be $\sigma(\mathrm{t\bar{t}Z})$ $=$ 0.95 $\pm$ 0.05 (stat) $\pm$ 0.06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory.

24 data tables

Measured absolute differential tt̄Z production cross section in the full phase space as a function of the transverse momentum of the Z boson, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation, and to the theory prediction at NLO+NNLL accuracy (1905.07815). The distribution $Δσ$ is integrated over the bin, and $\mathrm{d}σ/\mathrm{d}p_{\mathrm{T}}(\mathrm{Z})$ is additionally divided by the bin width. The last bin includes the overflow contribution, but a finite bin width is used for the normalization.

Measured absolute differential tt̄Z production cross section in the full phase space as a function of the transverse momentum of the Z boson, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation, and to the theory prediction at NLO+NNLL accuracy (1905.07815). The distribution $Δσ$ is integrated over the bin, and $\mathrm{d}σ/\mathrm{d}p_{\mathrm{T}}(\mathrm{Z})$ is additionally divided by the bin width. The last bin includes the overflow contribution, but a finite bin width is used for the normalization.

Measured normalized differential tt̄Z production cross section in the full phase space as a function of the transverse momentum of the Z boson, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation, and to the theory prediction at NLO+NNLL accuracy (1905.07815). The distribution $1/σ\,Δσ$ is integrated over the bin, and $1/σ\,\mathrm{d}σ/\mathrm{d}p_{\mathrm{T}}(\mathrm{Z})$ is additionally divided by the bin width. The last bin includes the overflow contribution, but a finite bin width is used for the normalization.

More…

Version 4
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 488, 2021.
Inspire Record 1850544 DOI 10.17182/hepdata.102525

Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_H$ = 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.

52 data tables

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

More…

Measurements of the differential production cross sections for a Z boson in association with jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2017) 022, 2017.
Inspire Record 1497519 DOI 10.17182/hepdata.128149

Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 inverse femtobarns. Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.

128 data tables

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the the cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the 1$^\text{st}$ jet $p_{\text{T}}$, $p_{\text{T}}(\text{j}_1)$, and breakdown of the relative uncertainty.

More…