Investigation into the event-activity dependence of $\Upsilon$(nS) relative production in proton-proton collisions at $\sqrt{s} = $ 7 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 001, 2020.
Inspire Record 1805867 DOI 10.17182/hepdata.95684

The ratios of the production cross sections between the excited $\Upsilon$(2S) and $\Upsilon$(3S) mesons and the $\Upsilon$(1S) ground state, detected via their decay into two muons, are studied as a function of the number of charged particles in the event. The data are from proton-proton collisions at $\sqrt{s} =$ 7 TeV, corresponding to an integrated luminosity of 4.8 fb$^{-1}$, collected with the CMS detector at the LHC. Evidence of a decrease in these ratios as a function of the particle multiplicity is observed, more pronounced at low transverse momentum $p_\mathrm{T}^{\mu\mu}$. For $\Upsilon$(nS) mesons with $p_\mathrm{T}^{\mu\mu}$ $\gt$ 7 GeV, where most of the data were collected, the correlation with multiplicity is studied as a function of the underlying event transverse sphericity and the number of particles in a cone around the $\Upsilon$(nS) direction. The ratios are found to be multiplicity independent for jet-like events. The mean $p_\mathrm{T}^{\mu\mu}$ values for the $\Upsilon$(nS) states as a function of particle multiplicity are also measured and found to grow more steeply as their mass increases.

30 data tables

The measured ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $p_T(\Upsilon(n$S$))>7\,GeV$ and $|y(\Upsilon(n$S$))| < 1.2$, as a function of track multiplicity $N_{track}$

The measured ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $p_T(\Upsilon(n$S$))>0\,GeV$ and $|y(\Upsilon(n$S$))| < 1.93$, as a function of track multiplicity $N_{track}$.

Mean $p_T$ values of the $\Upsilon(1$S$)$, $\Upsilon(2$S$)$, and $\Upsilon(3S)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$

More…

Study of Drell-Yan dimuon production in proton-lead collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 182, 2021.
Inspire Record 1849180 DOI 10.17182/hepdata.88292

Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.

28 data tables

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of dimuon invariant mass. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $15<m_{\mu\mu}<60$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $60<m_{\mu\mu}<120$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

More…

Dependence of inclusive jet production on the anti-$k_\mathrm{T}$ distance parameter in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2020) 082, 2020.
Inspire Record 1795080 DOI 10.17182/hepdata.95241

The dependence of inclusive jet production in proton-proton collisions with a center-of-mass energy of 13 TeV on the distance parameter $R$ of the anti-$k_\mathrm{T}$ algorithm is studied using data corresponding to integrated luminosities up to 35.9 fb$^{-1}$ collected by the CMS experiment in 2016. The ratios of the inclusive cross sections as functions of transverse momentum $p_\mathrm{T}$ and rapidity $y$, for $R$ in the range 0.1 to 1.2 to those using $R = $ 0.4 are presented in the region 84 $\lt$ $p_\mathrm{T}$ $\lt$ 1588 GeV and $|y|$ $\lt$ 2.0. The results are compared to calculations at leading and next-to-leading order in the strong coupling constant using different parton shower models. The variation of the ratio of cross sections with $R$ is well described by calculations including a parton shower model, but not by a leading-order quantum chromodynamics calculation including nonperturbative effects. The agreement between the data and the theoretical predictions for the ratios of cross sections is significantly improved when next-to-leading order calculations with nonperturbative effects are used.

88 data tables

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range |y|<0.5. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range 0.5<|y|<1.0. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range 1.0<|y|<1.5. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

More…

Measurement of quarkonium production cross sections in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 780 (2018) 251-272, 2018.
Inspire Record 1633431 DOI 10.17182/hepdata.85744

Differential production cross sections of J/$\psi$ and $\psi$(2S) charmonium and $\Upsilon$(nS) (n = 1, 2, 3) bottomonium states are measured in proton-proton collisions at $\sqrt{s} =$ 13 TeV, with data collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 fb$^{-1}$ for the J/$\psi$ and 2.7 fb$^{-1}$ for the other mesons. The five quarkonium states are reconstructed in the dimuon decay channel, for dimuon rapidity $|y| <$ 1.2. The double-differential cross sections for each state are measured as a function of $y$ and transverse momentum, and compared to theoretical expectations. In addition, ratios are presented of cross sections for prompt $\psi$(2S) to J/$\psi$, $\Upsilon$(2S) to $\Upsilon$(1S), and $\Upsilon$(3S) to $\Upsilon$(1S) production.

12 data tables

Double-differential cross section times the dimuon branching fraction of the J/psi meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Double-differential cross section times the dimuon branching fraction of the psi(2S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Double-differential cross section times the dimuon branching fraction of the Y(1S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

More…

Measurement of the total and differential inclusive B(+) hadron cross sections in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 771 (2017) 435-456, 2017.
Inspire Record 1485195 DOI 10.17182/hepdata.85745

The differential cross sections for inclusive production of B+ hadrons are measured as a function of the B+ transverse momentum pT[B] and rapidity y[B] in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 49.4 inverse picobarns. The measurement uses the exclusive decay channel B+ to J/psi K+, with J/psi mesons that decay to a pair of muons. The results show a reasonable agreement with theoretical calculations within the uncertainties.

7 data tables

B+ differential production cross sections DSIG/DPT for |yB|< 1.45 or |yB|< 2.1, at 13 TeV. The calculations from FONLL and PYTHIA are provided. The ratio of the data at 13 TeV to the FONLL predictions and the ratios of the PYTHIA to the FONLL calculations are also given.

B+ differential production cross sections DSIG/DETARAP for 10 < ptB < 100 GeV or 17 < ptB < 100 GeV, at 13 TeV. The calculations from FONLL and PYTHIA are provided. The ratio of the data at 13 TeV to the FONLL predictions and the ratios of the PYTHIA to the FONLL calculations are also given.

Ratios of B+ differential production cross sections at 13 TeV and at 7 TeV as a function of ptB for |yB|< 1.45 or |yB|< 2.1. The calculations from FONLL and PYTHIA are provided as well.

More…

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

78 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.

More…

Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 072005, 2017.
Inspire Record 1610623 DOI 10.17182/hepdata.79859

A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.

19 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 092001, 2017.
Inspire Record 1491950 DOI 10.17182/hepdata.76554

Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurements are performed in the lepton+jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.

164 data tables

Absolute cross section at particle level.

Covariance matrix of absolute cross section at particle level.

Absolute cross section at particle level.

More…

Studies of inclusive four-jet production with two b-tagged jets in proton-proton collisions at 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 112005, 2016.
Inspire Record 1486238 DOI 10.17182/hepdata.75375

Measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 inverse picobarns. The cross section is measured as a function of the jet transverse momentum for pt > 20 GeV, and of the jet pseudorapidity for abs(eta) < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pt between the jets are also studied. The inclusive cross section is measured to be sigma(pp to 2 b + 2 j + X) = 69 +/- 3 (stat) +/- 24 (syst) nb. The eta and pt distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.

12 data tables

The measured fiducial cross section. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

Differential cross section as a function of the transverse momentum PT of the leading b-jet. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

Differential cross section as a function of the transverse momentum PT of the subleading b-jet. The first uncertainty is the statistical one, the second uncertainty is the combined systematic uncertainty including luminosity, jet energy scale, sample purity, model dependence and jet energy resolution and trigger efficiency correction.

More…

Measurement of the double-differential inclusive jet cross section in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 451, 2016.
Inspire Record 1459051 DOI 10.17182/hepdata.73786

A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum pT and absolute jet rapidity |y| is presented. The analysis is based on proton-proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13 TeV. The data samples correspond to integrated luminosities of 71 and 44 inverse picobarns for |y| < 3 and 3.2 < |y| < 4.7, respectively. Jets are reconstructed with the anti-kt clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet pT up to 2 TeV and jet rapidity up to |y| = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at sqrt(s) = 13 TeV as at smaller centre-of-mass energies.

14 data tables

Inclusive Jet Cross Section for |rapidity| < 0.5 as a function of the jet transverse momentum. Jets are clustered with the anti-kt algorithm ( R = 0.7). The (sys) error is the total systematic error, including the luminosity uncertainty of 2.7%.

Inclusive Jet Cross Section for |rapidity| 0.5 TO 1.0 as a function of the jet transverse momentum. Jets are clustered with the anti-kt algorithm ( R = 0.7). The (sys) error is the total systematic error, including the luminosity uncertainty of 2.7%.

Inclusive Jet Cross Section for |rapidity| 1.0 TO 1.5 as a function of the jet transverse momentum. Jets are clustered with the anti-kt algorithm ( R = 0.7). The (sys) error is the total systematic error, including the luminosity uncertainty of 2.7%.

More…

Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 105 (2010) 022002, 2010.
Inspire Record 855299 DOI 10.17182/hepdata.56006

Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies.

5 data tables

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 0.1, 0.3, 0.5 and 0.7 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 0.9, 1.1, 1.3 and 1.5 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 1.7, 1.9, 2.1 and 2.3 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.

More…

Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 749 (2015) 187-209, 2015.
Inspire Record 1359450 DOI 10.17182/hepdata.68945

We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy sqrt(s)=8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the FEWZ program. The results are also compared to the commonly used leading-order MADGRAPH and next-to-leading-order POWHEG generators.

4 data tables

Measured double differential fiducial cross section normalised to the inclusive fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Measured absolute double differential fiducial cross section. The uncertainty indicates the total experimental uncertainties (statistical and systematic added in quadrature).

Covariance matrix of total experimental uncertainties (statistical and systematic uncertainties added in quadrature) of double differential fiducial cross section normalised to the inclusive fiducial cross section. The bin index is PT_i + 10*y_j.

More…

Comparison of the Z/gamma*+jets to gamma+jets cross sections in pp collisions at sqrt(s)= 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2015) 128, 2015.
Inspire Record 1372730 DOI 10.17182/hepdata.72989

A comparison of the differential cross sections for the processes Z/gamma* + jets and photon (gamma) + jets is presented. The measurements are based on data collected with the CMS detector at sqrt(s) = 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The differential cross sections and their ratios are presented as functions of pt. The measurements are also shown as functions of the jet multiplicity. Differential cross sections are obtained as functions of the ratio of the Z/gamma* pt to the sum of all jet transverse momenta and of the ratio of the Z/gamma* pt to the leading jet transverse momentum. The data are corrected for detector effects and are compared to simulations based on several QCD calculations.

14 data tables

The Z boson differential transverse momentum cross-section in an inclusive $Z/\gamma^{*}+\mathrm{jets}$, $N_{\mathrm{jets}} \geq1$ selection.

The $\gamma$ differential transverse momentum cross-section in an inclusive $\gamma+\mathrm{jets}$, $N_{\mathrm{jets}} \geq1$ selection for central rapidities $\vert y_{\gamma} \vert > 1.4$.

The Z boson differential transverse momentum cross-section in an inclusive $Z/\gamma^{*}+\mathrm{jets}$, $N_{\mathrm{jets}} \geq2$ selection.

More…

Measurement of the inclusive jet cross section in pp collisions at sqrt(s) = 2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 265, 2016.
Inspire Record 1410826 DOI 10.17182/hepdata.72839

The double-differential inclusive jet cross section is measured as a function of jet transverse momentum pT and absolute rapidity y, using proton-proton collision data collected with the CMS experiment at the LHC, at a center-of-mass energy of sqrt(s) = 2.76 TeV and corresponding to an integrated luminosity of 5.43 inverse picoboarns. Jets are reconstructed within the pT range of 74 to 592 GeV and the rapidity range |y| < 3.0. The reconstructed jet spectrum is corrected for detector resolution. The measurements are compared to the theoretical prediction at next-to-leading-order QCD using different sets of parton distribution functions. This inclusive cross section measurement explores a new kinematic region and is consistent with QCD predictions.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Study of B meson production in pPb collisions at sqrt(s_NN) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 032301, 2016.
Inspire Record 1390110 DOI 10.17182/hepdata.71407

The production cross sections of the B+, B0, and B0s mesons, and of their charge conjugates, are measured via exclusive hadronic decays in pPb collisions at the center-of-mass energy sqrt(s_NN) = 5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 inverse nanobarns. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.

8 data tables

The measured $p_{\rm{T}}$-differential production cross section of $B^{+}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B_{s}^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

More…

Transverse momentum spectra of b jets in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 754 (2016) 59, 2016.
Inspire Record 1397180 DOI 10.17182/hepdata.72511

We present a measurement of b jet transverse momentum (pt) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35 inverse nanobarns collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon-nucleon collisions and are compared to a reference obtained from PYTHIA simulations of pp collisions. The PYTHIA-based estimate of the nuclear modification factor is found to be 1.22 +/- 0.15 (stat + syst pPb) +/- 0.27 (syst PYTHIA) averaged over all jets with pt between 55 and 400 GeV/c and with abs(eta[lab]) < 2. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.

17 data tables

Distributions of the JP tagger discriminator before applying the SSV tagger selection.

Distributions of the JP tagger discriminator after applying the SSV tagger selection.

Distributions of the b-tagging efficiency as a function of the mistag rate of light jets for pp collisions in a PYTHIA simulation.

More…

Study of Z boson production in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 759 (2016) 36-57, 2016.
Inspire Record 1410832 DOI 10.17182/hepdata.71358

The production of Z bosons in pPb collisions at sqrt(s[NN]) = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions.

3 data tables

Differential cross section of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Forward-backward asymmetry (AFB) distribution of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Differential cross section of the Z bosons in pPb collisions as a function of transverse momentum in the fiducial region for the combined leptonic decay channel.


Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 714 (2012) 136-157, 2012.
Inspire Record 1113442 DOI 10.17182/hepdata.58908

The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.

3 data tables

The measured Lambda/B integrated cross section and the ratio of anti-Lambda/B to Lambda/B cross sections.

The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B transverse momentum The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.

The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B absolute rapidity. The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.


Measurement of t-tbar production with additional jet activity, including b quark jets, in the dilepton channel using pp collisions at sqrt(s) = 8TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 379, 2016.
Inspire Record 1397174 DOI 10.17182/hepdata.70880

Jet multiplicity distributions in top quark pair (t t-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton decay channels (e+ e-, mu+ mu-, and e+/- mu-/+). The absolute and normalized differential cross sections for t t-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential t t-bar b and t t-bar b b-bar cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.

76 data tables

Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.

Normalized differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.

Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 60GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.

More…

Measurement of the differential cross section for top quark pair production in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 542, 2015.
Inspire Record 1370682 DOI 10.17182/hepdata.68516

The normalized differential cross section for top quark pair (tt-bar) production is measured in pp collisions at a centre-of-mass energy of 8 TeV at the CERN LHC using the CMS detector in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurements are performed in the lepton + jets (e/mu + jets) and in the dilepton (e+e-, mu+mu-, and e+-mu-+) decay channels. The tt-bar cross section is measured as a function of the kinematic properties of the charged leptons, the jets associated to b quarks, the top quarks, and the tt-bar system. The data are compared with several predictions from perturbative quantum chromodynamics up to approximate next-to-next-to-leading-order precision. No significant deviations are observed relative to the standard model predictions.

50 data tables

Normalized differential tt cross section (from l+jets channel) as a function of the transverse momentum pt of the lepton. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

Normalized differential tt cross section (from l+jets channel) as a function of the pseudo-rapidity of the lepton. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

Normalized differential tt cross section (from l+jets channel) as a function of the transverse momentum pt(b-jet) of the b-jet. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

More…

Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 92 (2015) 112001, 2015.
Inspire Record 1380605 DOI 10.17182/hepdata.70721

The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given pt(min) threshold starting at pt(min) = 0.8 and 1 GeV, respectively, is studied in pp collisions at sqrt(s) = 8 TeV. The particles and the jets are measured in the pseudorapidity ranges abs(eta) < 2.4 and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and to other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

2 data tables

Charged particles within $|\eta| < 2.4$ with $N_{ch}(p_T>40\;MeV)>0$ in $5.3<|\eta|<6.5$.

Charged particle jets within $|\eta| < 1.9$ with anti-kt (R=0.5) and $N_{ch}(p_T>40\;MeV)>0$ in $5.3<|\eta|<6.5$.


Measurement of J/psi and psi(2S) prompt double-differential cross sections in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 191802, 2015.
Inspire Record 1345023 DOI 10.17182/hepdata.66886

The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.

5 data tables

J/psi double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

psi(2S) double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

J/psi double-differential cross section times branching fraction and the corresponding scaling factors to obtain the cross sections for different polarization scenarios (azimuthal polarization parameter in the center of mass helicity frame lambda_theta^HX = +1, -1, +0.1) as a function of pT for |y| < 1.2.

More…

Evidence of b-jet quenching in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 113 (2014) 132301, 2014.
Inspire Record 1269454 DOI 10.17182/hepdata.68931

The production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (pt) range of 80-250 GeV, and within pseudorapidity abs(eta < 2). The nuclear modification factor (R[AA]) calculated from these spectra shows a strong suppression in the b-jet yield in PbPb collisions relative to the yield observed in pp collisions at the same energy. The suppression persists to the largest values of pt studied, and is centrality dependent. The R[AA] is about 0.4 in the most central events, similar to previous observations for inclusive jets. This implies that jet quenching does not have a strong dependence on parton mass and flavor in the jet pt range studied.

13 data tables

The b-jet yield as a function of pT is for the 0-100% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

The b-jet yield as a function of pT is for the 0-10% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

The b-jet yield as a function of pT is for the 10-30% centrality class of PbPb collisions. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA.

More…

Measurement of the Z gamma production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2015) 164, 2015.
Inspire Record 1345354 DOI 10.17182/hepdata.66985

The cross section for the production of Z gamma in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 inverse femtobarns. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of Z Z gamma and Z gamma gamma are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson.

4 data tables

Inclusive fiducial cross sections in bins of pT(gamma) with statistical, systematic, and luminosity uncertainties, respectivley. Results are not divided by bin-widths. The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

Fiducial cross sections with jet-veto in bins of pT(gamma) with statistical, systematic, and luminosity uncertainties, respectivley. Results are not divided by bin-widths. The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

Ratio of fiducial cross section with jet-veto and the inclusive cross section in bins of pT(gamma). The last bin is the cross section for pT(gamma) > 120 GeV. Combined result of electron and muon channels.

More…

Measurements of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 749 (2015) 14-34, 2015.
Inspire Record 1342266 DOI 10.17182/hepdata.64486

Differential cross sections as a function of transverse momentum pt are presented for the production of Y(nS) (n = 1, 2, 3) states decaying into a pair of muons. Data corresponding to an integrated luminosity of 4.9 inverse femtobarns in pp collisions at sqrt(s) = 7 TeV were collected with the CMS detector at the LHC. The analysis selects events with dimuon rapidity abs(y) < 1.2 and dimuon transverse momentum in the range 10 < pt < 100 GeV. The measurements show a transition from an exponential to a power-law behavior at pt ~ 20 GeV for the three Y states. Above that transition, the Y spectrum is significantly harder than that of the Y(1S) and Y(2S). The ratios of the Y(3S) and Y(2S) differential cross sections to the Y(1S) cross section show a rise as pt increases at low pt, then become flatter at higher pt.

15 data tables

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0 < |y| < 0.6$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $0.6 < |y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

The $p_{\rm T}$ bin width, the weighted mean $p_{\rm T}$ within a bin, and the differential cross section times the dimuon branching fraction for the $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) with $|y| < 1.2$. The statistical and systematic uncertainties in the differential cross section are given as the percentage of the cross section.

More…