Azimuthal anisotropy ($v_2$) and two-particle angular correlations of high $p_T$ charged hadrons have been measured in Au+Au collisions at $\sqrt{s_{NN}}$=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high $p_T$ partons. The monotonic rise of $v_2(p_T)$ for $p_T<2$ GeV/c is consistent with collective hydrodynamical flow calculations. At $\pT>3$ GeV/c a saturation of $v_2$ is observed which persists up to $p_T=6$ GeV/c.
$v_{2}$($p_{T}$) for different collision centralities. The errors are statistical only. The systematic uncertainties, which are highly correlated point-to-point, are $^{+5}_{-20}%$.
$v_{2}$($p_{T}$) for minimum-bias events (circles). The error bars represent the statistical errors and the caps show the systematic uncertainty. The data are compared with hydro+pQCD calculations [9] assuming the initial gluon density $dN^{g}/dy$ = 1000 (dashed line), 500 (dotted line), and 200 (dashed-dotted line). Also shown are pure hydrodynamical calculations [16] (solid line).
High $p_{T}$ azimuthal correlation functions for central events. Upper panel: Correlation function for $|\Delta\eta|$ < 0.5 (solid circles) and scaled correlation function for 0.5 < $|\Delta\eta|$ < 1.4 (open squares). Lower panel: Difference of the two correlation functions. Also shown are the fits to the data (described in the text).
The mean multiplicities of π− mesons and protons originating from pC, dC, αC, and CC interactions at a momentum of p=4.2 GeV/c per projectile nucleon and the distributions of these particles in kinematical variables are presented. These experimental distributions are compared with the corresponding predictions obtained on the basis of the FRITIOF model. It is shown that the FRITIOF version used in the present analysis describes satisfactorily our experimental data.
No description provided.
No description provided.
No description provided.
We present first data on event-by-event fluctuations in the average transverse momentum of charged particles produced in Pb+Pb collisions at the CERN SPS. This measurement provides previously unavailable information allowing sensitive tests of microscopic and thermodynamic collision models and to search for fluctuations expected to occur in the vicinity of the predicted QCD phase transition. We find that the observed variance of the event-by-event average transverse momentum is consistent with independent particle production modified by the known two-particle correlations due to quantum statistics and final state interactions and folded with the resolution of the NA49 apparatus. For two specific models of non-statistical fluctuations in transverse momentum limits are derived in terms of fluctuation amplitude. We show that a significant part of the parameter space for a model of isospin fluctuations predicted as a consequence of chiral symmetry restoration in a non-equilibrium scenario is excluded by our measurement.
Studied YRAP (for PI's) is in a region of 4 TO 5.5.
None
FRAGB - BEAM FRAGMENT WITH Z>=2.
.
.
None
No description provided.
None
C3H8 nucleus. P, DEUT and TRITIUM in the final state are considered as spectators.
P, DEUT and TRITIUM in the final state are considered as spectators.
C_3 H_8 nucleus. P in the final state are considered as spectators.
None
CENTRAL COLLISIONS.
CENTRAL COLLISIONS.
None
No description provided.
No description provided.
PT(P=3,NAME=OUT)**2 - MEAN SQUARE OF THE PROJECTION OF THE ASSOCIATED PARTICLE TRANSVERSE MOMENTUM ONTO THE NORMAL TO THE TRIGGER PARTICLE PRODUCTION PLANE.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.