A study of ϕ-meson photoproduction by partially polarized photons of energy 20–40 GeV is reported. The production mechanism is found to conserves-channel helicity and to proceed via natural-parity exchange in thet channel. In the photoproduction of high-massK+K− states with photons of energy 20–70 GeV, there is evidence for an enhancement at a mass of 1.76 GeV with width 0.08 GeV.
No description provided.
No description provided.
No description provided.
The processγγπ+π− has been measured with complete particle identification. Cross-sections are presented from near threshold up to the region of thef(1270). In the mass range 0.5–0.7 GeV, crosssections are lower than the Born term predictions and show no evidence for an ε(600). The two-photon width of thef(1270) is found to be in agreement with previous results.
Data for W > 1 GeV read from graph.. Additional overall systematic error 10% for W < 1 GeV, rising to 20% for the 4 lowest W points.
We have measured the reaction γγ → π + π − π 0 using the PLUTO detector at PETRA. A pronounced enhancement is seen in the π + π − π 0 mass distribution corresponding to the A 2 meson. The event configuration in this enhancement favors a 2 + spin-parity assignment. The value of Γ γγ =1.06 ±0.18±0.19 keV obtained for the two-photon decay width of the A 2 agrees with previous measurements and with quark model predictions.
No description provided.
The total photon-photon cross section for the production of hadrons, σ γγ ( W , Q 2 ), has been measured in the single-tag condition for 0.1 < Q 2 < 1.0 GeV 2 and 1.5 < W < GeV. The results are based on 2929 multihadron events obtained with the PLUTO detector at PETRA. The Q 2 dependence of σ γγ average over W can be described by GVDM. The dependence of σ γγ on the mass W of the hadronic final state has been extracted at Q 2 = 0.44 GeV 2 by unfolding the effects of experimental resolution and acceptance. The cross section is found to rise at small W . The result is compared with VDM and the parton model.
No description provided.
DATA EXTRAPOLATED TO Q**2=0 USING THE GENERALIZED VECTOR MESON DOMINANCE MODEL (GVDM).
A measurement of the γγ total cross section, σγγ(Q2W), is presented for theQ2 range 0.1 to 100 GeV2, and for the massW of the hadronic final state between 1.5 and 10 GeV. The dependence of σγγ on bothQ2 andW is measured. The results are compared with theoretical predictions. It is found that the data are well described by a sum of quarkparton model and vector dominance contributions.
No description provided.
No description provided.
No description provided.
The differential cross section of the reactione+e−→e+e− at a c.m. energy of 34.7 GeV has been measured. The result, together with our previously measurede+e−→α+α− data, are compared with the standard model predictions. We obtain for the weak neutral current couplings the valuesgv2=0.09×0.06,ga2=0.38×0.08. A fit of the Weinberg mixing angle gives the valuegv2=0.09×0.06,ga2=0.038×0.08. The data are also used to set limits on possible deviations from the pointlike structure of leptons. An upper limit for thee+e− coupling to a heavy spin 0 boson is also given.
Fully corrected results for Bhabha scattering.
The differential cross section for Bhabha scattering.
??? CONSTANTS ???.
We have studied 419 τ pair events produced in the reactione+e−→τ+ τ− at a c.m. energy of 34.6 GeV. We measure the cross section and angular distribution, as well as the decay branching ratios. The production characteristics are consistent with the Standard Electroweak Model predictions of γ andZ0 interference. The branching ratios are generally consistent with the τ decaying according to standard weak interaction principles, but we observe somewhat more decays resulting in single charged hadrons plus neutrals than are predicted by present theory.
Corrected for radiative effects.
Measured cross section relative to Standard Model Prediction.
Asymmetry based on fits to angular distribution.
We present high statistics measurements of the energy-energy correlation (EEC) and its related asymmetry (AEEC) ine+e− annihilation at a c.m. energy of 34.6 GeV. We find that the energy dependence as well as the large angle behaviour of the latter are well described by perturbative QCD calculations toOα(s2). Non-perturbative effects are estimated with the help of fragmentation models in which different jet topologies are separated using (ɛ, δ) cuts, and found to be small. The extracted values of\(\Lambda _{\overline {MS} }\) lie between 100 and 300 MeV.
Corrected energy-energy correlation data.
CORRECTED FORWARD-BACKWARD ASYMMETRY.
The photoproduction of the final state ω π+π−π0 has been studied as part of a survey of photoproduction in the energy range 20–70 GeV in the Omega spectrometer at CERN. The π+π−π0 system produced with the ω meson has a strongρ±π± component which is predominantlyI=1 andJπ=1+. For theωρ±π∓ state a spin-parity analysis favoursJπ=1−, and the mass spectrum peaks at 2.28±0.05 GeV. The fitted width is Γ=0.44±0.11 GeV. The photoproduction cross-section of theωρ±π∓ state, averaged over the energy range 25–60 GeV, is 150±50 nb.
Figure gives data in 7 momenta bins. Averaged result is given here.
A search for the reactionsγγ→ωω andγγ→ρ0ω has been carried out at an averagee+e− CM energy of 34.6 GeV with an integrated luminosity of 45 pb−1. Upper limits are set for these two channels over the γγ CM Energy range of 1.6 to 2.5 GeV. The cross section is determined for the exclusive channelγγ→π+2π−π0.
Data read from graph.
Data read from graph.
Data read from graph.