Measurement of photonuclear jet production in ultra-peripheral Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 111 (2025) 052006, 2025.
Inspire Record 2829427 DOI 10.17182/hepdata.156979

In ultra-relativistic heavy ion collisions at the LHC, each nucleus acts a sources of high-energy real photons that can scatter off the opposing nucleus in ultra-peripheral photonuclear ($\gamma+A$) collisions. Hard scattering processes initiated by the photons in such collisions provide a novel method for probing nuclear parton distributions in a kinematic region not easily accessible to other measurements. ATLAS has measured production of dijet and multi-jet final states in ultra-peripheral Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV using a data set recorded in 2018 with an integrated luminosity of 1.72 $\text{nb}^{-1}$. Photonuclear final states are selected by requiring a rapidity gap in the photon direction; this selects events where one of the outgoing nuclei remains intact. Jets are reconstructed using the anti-$k_\text{t}$ algorithm with radius parameter, $R = 0.4$. Triple-differential cross-sections, unfolded for detector response, are measured and presented using two sets of kinematic variables. The first set consists of the total transverse momentum ($H_\text{T}$),rapidity, and mass of the jet system. The second set uses $H_\text{T}$ and particle-level nuclear and photon parton momentum fractions, $x_\text{A}$ and $z_{\gamma}$, respectively. The results are compared with leading-order (LO) perturbative QCD calculations of photonuclear jet production cross-sections, where all LO predictions using existing fits fall below the data in the shadowing region. More detailed theoretical comparisons will allow these results to strongly constrain nuclear parton distributions, and these data provide results from the LHC directly comparable to early physics results at the planned Electron-Ion Collider.

3 data tables

The fraction of photonuclear jet events passing the fiducial requirements in which the photon-emitting nucleus does not break up as a function of \zg. The systematic uncertainties are not symmetrized, and correlations in uncertainties are neglected for both the total systematic uncertainty and statistical uncertainty.

Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $y_\text{jets}$, and $m_\text{jets}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.

Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $x_\text{A}$, and $z_{\gamma}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.


Bottom quark energy loss and hadronization with B$^+$ and B$^0_\mathrm{s}$ nuclear modification factors using pp and \PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2025) 195, 2025.
Inspire Record 2829186 DOI 10.17182/hepdata.152831

The production cross sections of B$^0_\mathrm{s}$ and B$^+$ mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on measurements of the B$^0_\mathrm{s}$$\to$ J/$ψ(μ^+μ^-)ϕ$(1020) (K$^+$K$^-$) and B$^+$$\to$ J/$ψ(μ^+μ^-)$K$^+$ decay channels. Results are presented in the transverse momentum ($p_\mathrm{T}$) range 7-50 GeV/$c$ and the rapidity interval $\lvert y \rvert$$\lt$ 2.4 for the B mesons. The measured $p_\mathrm{T}$-differential cross sections of B$^+$ and B$^0_\mathrm{s}$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors, $R_\mathrm{AA}$, of the B mesons are determined. For $p_\mathrm{T}$$\lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb collisions (with $R_\mathrm{AA}$ values significantly below unity), with less suppression observed for the B$^0_\mathrm{s}$ mesons. In this $p_\mathrm{T}$ range, the $R_\mathrm{AA}$ values for the B$^+$ mesons are consistent with those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both B$^+$ and B$^0_\mathrm{s}$ are found to be less suppressed than either inclusive charged hadrons or D$^0$ mesons, with the B$^0_\mathrm{s}$$R_\mathrm{AA}$ value consistent with unity. The $R_\mathrm{AA}$ values found for the B$^+$ and B$^0_\mathrm{s}$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.

4 data tables

The B+ meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.

The Bs meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting (pT<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.

The B+ meson $p_{\rm{T}}$-dependent RAA in PpPp. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4).

More…

Measurement of the inclusive cross sections for W and Z boson production in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2025) 162, 2025.
Inspire Record 2816048 DOI 10.17182/hepdata.153468

Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV. Electron and muon decay modes ($\ell$ = e or $\mu$) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 $\pm$ 6 pb$^{-1}$ at 5.02 TeV and 206 $\pm$ 5 pb$^{-1}$ at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV are $\sigma$(pp $\to$ W+X) $\mathcal{B}$(W $\to$$\ell\nu$) = 7300 $\pm$ 10 (stat) $\pm$ 60 (syst) $\pm$ 140 (lumi) pb, and $\sigma$(pp $\to$ Z+X) $\mathcal{B}$(Z $\to$$\ell^+\ell^-$) = 669 $\pm$ 2 (stat) $\pm$ 6 (syst) $\pm$ 13 (lumi) pb for the dilepton invariant mass in the range of 60-120 GeV. The corresponding results at 13 TeV are 20480 $\pm$ 10 (stat) $\pm$ 170 (syst) $\pm$ 470 (lumi) pb and 1952 $\pm$ 4 (stat) $\pm$ 18 (syst) $\pm$ 45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W$^+$ and W$^-$ production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.

25 data tables

Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

Distributions of $m_T$ in the $W^{+}$ signal selection for mu final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 13TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

More…

Disentangling sources of momentum fluctuations in Xe+Xe and Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 252301, 2024.
Inspire Record 2806288 DOI 10.17182/hepdata.153671

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the event-wise average transverse momentum ($P([p_{\mathrm{T}}])$). Distinguishing between contributions from fluctuations in the size of the nuclear overlap area (geometrical component) and other sources at fixed size (intrinsic component) presents a challenge. Here, these two components are distinguished by measuring the mean, variance, and skewness of $P([p_{\mathrm{T}}])$ in $^{208}$Pb+$^{208}$Pb and $^{129}$Xe+$^{129}$Xe collisions at $\sqrt{s_{{\mathrm{NN}}}} = 5.02$ and 5.44 TeV, respectively, using the ATLAS detector at the LHC. All observables show distinct changes in behavior in ultra-central collisions, where the geometrical variations are suppressed as the overlap area reaches its maximum. These results demonstrate a new technique to disentangle geometrical and intrinsic fluctuations, enabling constraints on initial condition and properties of the quark-gluon plasma, such as the speed of sound.

42 data tables

Data from Figure 1, panel a, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5

Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5

Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Xe+Xe collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5

More…

Stairway to discovery: a report on the CMS programme of cross section measurements from millibarns to femtobarns

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rept. 1115 (2025) 3-115, 2025.
Inspire Record 2791238 DOI 10.17182/hepdata.152803

The Large Hadron Collider at CERN, delivering proton-proton collisions at much higher energies and far higher luminosities than previous machines, has enabled a comprehensive programme of measurements of the standard model (SM) processes by the CMS experiment. These unprecedented capabilities facilitate precise measurements of the properties of a wide array of processes, the most fundamental being cross sections. The discovery of the Higgs boson and the measurement of its mass became the keystone of the SM. Knowledge of the mass of the Higgs boson allows precision comparisons of the predictions of the SM with the corresponding measurements. These measurements span the range from one of the most copious SM processes, the total inelastic cross section for proton-proton interactions, to the rarest ones, such as Higgs boson pair production. They cover the production of Higgs bosons, top quarks, single and multibosons, and hadronic jets. Associated parameters, such as coupling constants, are also measured. These cross section measurements can be pictured as a descending stairway, on which the lowest steps represent the rarest processes allowed by the SM, some never seen before.

3 data tables

Cross sections of selected high-energy processes measured by the CMS experiment. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% CL upper limit on the process indicated by the solid line of the same colour.

Summary of production cross section measurements involving top quarks. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour.

Summary of measurements of jet cross sections and electroweak processes in association with jets. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour. Versions of these plots in pdf format with links to the publications can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-23-004/.


Girth and groomed radius of jets recoiling against isolated photons in lead-lead and proton-proton collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 861 (2025) 139088, 2025.
Inspire Record 2783507 DOI 10.17182/hepdata.151507

This Letter presents the first measurements of the groomed jet radius $R_\mathrm{g}$ and the jet girth $g$ in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables $R_\mathrm{g}$ and $g$ provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of 1.7 nb$^{-1}$ and 301 pb$^{-1}$, respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum $p_\mathrm{T}^\gamma$$>$ 100 GeV and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum $p_\mathrm{T}^\text{jet}$ such that $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.4. The measured $R_\mathrm{g}$ and $g$ distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.8, i.e., those that closely balance the photon $p_\mathrm{T}^\gamma$, are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.4 reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements.

28 data tables

Unfolded jet girth distribution in PbPb normalized to the number of jets that pass the $x_J$>0.4 selection. All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin).The covaraince matrices are provided for the statistical uncertainties from data and MC in this HepData record.

Covariance matrix of the statistical uncertainty in data for the unfolded jet girth distribution in PbPb for jets that pass the $x_J$>0.4 selection.The bin indices correspond to the bins used in the jet girth distribution.

Covariance matrix of the statistical uncertainty in MC for the unfolded jet girth distribution in PbPb for jets that pass the $x_J$>0.4 selection.The bin indices correspond to the bins used in the jet girth distribution.

More…

Extracting the speed of sound in the strongly interacting matter created in ultrarelativistic lead-lead collisions at the LHC

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Rept.Prog.Phys. 87 (2024) 077801, 2024.
Inspire Record 2747107 DOI 10.17182/hepdata.146016

Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb$^{-1}$. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of 0.241 $\pm$ 0.002 (stat) $\pm$ 0.016 (syst) in natural units. The effective medium temperature, estimated using the mean transverse momentum, is 219 $\pm$ 8 (syst) MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.

3 data tables

The event fraction distribution as a function of the charged-particle multiplicity, $N_{\mathrm{ch}}$, within the kinematic range of $|\eta|<0.5$ and extrapolated to the full $p_{\mathrm{T}}$ range, in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV. The $N_{\mathrm{ch}}$ value is normalized by its value in the $0-5\%$ centrality class ($N_{\mathrm{ch}}^{0}$).

The average transverse momentum of charged particles, $\langle p_{\mathrm{T}}\rangle$, as a function of the charged-particle multiplicity, $N_{\mathrm{ch}}$, within the kinematic range of $|\eta|<0.5$ and extrapolated to the full $p_{\mathrm{T}}$ range in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV. Both $\langle p_{\mathrm{T}}\rangle$ and $N_{\mathrm{ch}}$ are normalized by their values in the $0-5\%$ centrality class (${\langle p_{\mathrm{T}}\rangle}^{0}$ and $N_{\mathrm{ch}}^{0}$).

The speed of sound, $c^2_{\mathrm{s}}$, as a function of the effective temperature, $T_{\mathrm{eff}}$, with the CMS data point obtained from ultra-central PbPb collision data at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV.


Higher-order moments of the elliptic flow distribution in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 2024 (2024) 106, 2024.
Inspire Record 2724506 DOI 10.17182/hepdata.132638

The hydrodynamic flow-like behavior of charged hadrons in high-energy lead-lead collisions is studied through multiparticle correlations. The elliptic anisotropy values based on different orders of multiparticle cumulants, $v_{2}\{2k\}$, are measured up to the tenth order ($k$ = 5) as functions of the collision centrality at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The data were recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 0.607 nb$^{-1}$. A hierarchy is observed between the coefficients, with $v_{2}\{2\} > v_{2}\{4\} \gtrsim v_{2}\{6\} \gtrsim v_{2}\{8\} \gtrsim v_{2}\{10\}$. Based on these results, centrality-dependent moments for the fluctuation-driven event-by-event $v_{2}$ distribution are determined, including the skewness, kurtosis and, for the first time, superskewness. Assuming a hydrodynamic expansion of the produced medium, these moments directly probe the initial-state geometry in high-energy nucleus-nucleus collisions.

8 data tables

The $v_2\{2k\}$ ($k = 1, ..., 5$) values as functions of centrality in PbPb collisions at $\sqrt{s_{NN}}=5.02~\textrm{Te}\textrm{V}$. The measurement is performed with charged particles within the acceptance region.

The relative differences $(v_2\{2k\}-v_2\{10\})/v_2\{10\}$ ($k = 1, ..., 4$) as functions of centrality in PbPb collisions at $\sqrt{s_{NN}}=5.02~\textrm{Te}\textrm{V}$. The measurement is performed with charged particles within the acceptance region.

The $h_1$ and the $h_2$ hydrodynamic probes as functions of centrality in PbPb collisions at $\sqrt{s_{NN}}=5.02~\textrm{Te}\textrm{V}$. The measurement is performed with charged particles within the acceptance region.

More…

Charged-particle production as a function of the relative transverse activity classifier in pp, p$-$Pb, and Pb$-$Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 01 (2024) 056, 2024.
Inspire Record 2709103 DOI 10.17182/hepdata.146104

Measurements of charged-particle production in pp, p$-$Pb, and Pb$-$Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum ($p_{\mathrm{T}}^{\rm trig}$) in the range $8<p_{\mathrm{T}}^{\rm trig}<15$ GeV$/c$. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, $R_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$, is used to group events according to their UE activity, where $N_{\mathrm{ch}}^{\mathrm{T}}$ is the charged-particle multiplicity per event in the transverse region and $\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$ is the mean value over the whole analysed sample. The energy dependence of the $R_{\mathrm{T}}$ distributions in pp collisions at $\sqrt{s}=2.76$, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle $p_{\rm T}$ spectra as a function of $R_{\mathrm{T}}$ in the three azimuthal regions in pp, p$-$Pb, and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p$-$Pb).

28 data tables

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=2.76~\mathrm{TeV}$

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=5.02~\mathrm{TeV}$

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=7~\mathrm{TeV}$

More…

System size dependence of hadronic rescattering effect at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-175, 2023.
Inspire Record 2691823 DOI 10.17182/hepdata.146076

The first measurements of $\mathrm{K^{*}(892)^{0}}$ resonance production as a function of charged-particle multiplicity in Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.44 TeV and pp collisions at $\sqrt{s}=$ 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity ($|y|< 0.5$) using the hadronic decay channel $\mathrm{K^{*0}} \rightarrow \mathrm{K^{\pm} \pi^{\mp}}$. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of $\mathrm{K^{*0}}$, and yield ratios of resonance to stable hadron ($\mathrm{K^{*0}}$/K) are compared across different collision systems (pp, p$-$Pb, Xe$-$Xe, and Pb$-$Pb) at similar collision energies to investigate how the production of $\mathrm{K^{*0}}$ resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of $\mathrm{K^{*0}}$ in Xe$-$Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using HRG-PCE model.

27 data tables

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 0-1\% multiplicity class.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 1-5\% multiplicity class.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 5-10\% multiplicity class.

More…