Search for b hadron decays to long-lived particles in the CMS endcap muon detectors

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-24-004, 2025.
Inspire Record 2958479 DOI 10.17182/hepdata.157009

A search for long-lived particles originating from the decay of b hadrons produced in proton-proton collisions with a center-of-mass energy of 13 TeV at the LHC is presented. The analysis is performed on a data set recorded in 2018, corresponding to an integrated luminosity of 41.6 fb$^{-1}$. Interactions of the long-lived particles in the CMS endcap muon system would create hadronic or electromagnetic showers, producing clusters of detector hits. Selected events contain at least one such high-multiplicity cluster in the muon endcaps and require the presence of a displaced muon. The most stringent upper limits to date on the branching fraction $\mathcal{B}$(B $\to$ K$Φ$), where the long-lived particle $Φ$ decays to a pair of hadrons, are obtained for $Φ$ masses of 0.3$-$3.0 GeV and $Φ$ mean proper decay lengths in the range of 1$-$500 cm.

14 data tables

Distributions of the CSC cluster time shown for signal samples with m = 0.3 GeV, c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV, c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV, c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.

Distributions of the CSC cluster size $N_{hits}$ shown for signal samples with m = 0.3 GeV, c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV, c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV, c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.

Distributions of the $\Delta\Phi$ between the CSC cluster and the trigger muon, shown for signal samples with m = 0.3 GeV c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.

More…

Search for resonant production of pairs of dijet resonances through broad mediators in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-24-038, 2025.
Inspire Record 2954159 DOI 10.17182/hepdata.159918

A reinterpretation of a prior narrow-resonance search is performed to investigate the resonant production of pairs of dijet resonances via broad mediators. This analysis targets events with four resolved jets, requiring dijet invariant masses greater than 0.2 TeV and four-jet invariant masses greater than 1.6 TeV. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The reinterpretation considers the production of new heavy four-jet resonances, with widths ranging from 1.5 to 10% of their mass, which decay to a pair of dijet resonances. This analysis probes resonant production in the four-jet and dijet mass distributions. Upper limits at 95% confidence level and significances are reported on the production cross section of new resonances as functions of their widths and masses, between 2 and 10 TeV. In particular, at a four-jet resonance mass of 8.6 TeV, the local (global) significance ranges from 3.9 (1.6) to 3.6 (1.4) standard deviations (s.d.) as the resonance width is increased from 1.5 to 10%. This relative insensitivity to the choice of width indicates that a broad resonance is an equally valid interpretation of this excess. The broad resonance hypothesis at a resonance mass of 8.6 TeV is supported by the presence of an event with a four-jet mass of 5.8 TeV and an average dijet mass of 2.0 TeV. Also, we report the reinterpretation of a second effect, at a four-jet resonance mass of 3.6 TeV, which has a local (global) significance of up to 3.9 (2.2) s.d.

51 data tables

Observed number of events within bins of the four-jet mass and the average mass of the two dijets.

Observed number of events within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.

Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the average mass of the two dijets.

More…

Search for new physics in final states with semi-visible jets or anomalous signatures using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 012021, 2025.
Inspire Record 2918816 DOI 10.17182/hepdata.159761

A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.

6 data tables

Acceptance times efficiency weighted yields across the signal grid.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.

More…

Version 2
Search for $t$-channel scalar and vector leptoquark exchange in the high-mass dimuon and dielectron spectra in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-013, 2025.
Inspire Record 2904423 DOI 10.17182/hepdata.156848

A search for $t$-channel exchange of leptoquarks (LQs) is performed in dimuon and dielectron spectra using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. Eight scenarios are considered, in which scalar or vector LQs couple up or down quarks to muons or electrons, for dilepton invariant masses above 500 GeV. The LQ masses are probed up to 5 TeV, beyond a regime probed by previous pair-production and single-production searches. The differential distributions of dilepton events are fit to templates that model the nonresonant LQ exchange and various standard model background processes. Limits are set on LQ-fermion coupling strengths for scalar and vector LQ masses in the 1-5 TeV range at 95% confidence level, establishing stringent limits on first- and second-generation LQs.

26 data tables

Observed and Expected UL exclusions on the $BR(H\to SUEP)$ of hadronic signals with $m_{A'} = 0.7\;GeV$ and $BR(A' \rightarrow ee) = BR(A' \rightarrow \mu\mu) = 0.15$ and $BR(A' \rightarrow \pi\pi) = 0.7$.

The observed data in the dielectron channel and the fitted signal-plus-background templates, shown for the $S_{e u}$ scenario with a candidate LQ mass of 2.5 TeV. Distributions of events are binned in the reconstructed dilepton mass, rapidity, and cosine theta.

Observed and Expected UL exclusions on the $BR(H\to S)$ of leptonic signals with $m_{A'} = 0.5\;GeV$ and $BR(A' \rightarrow ee) = BR(A' \rightarrow \mu\mu) = 0.2$ and $BR(A' \rightarrow \pi\pi) = 0.6$.

More…

Search for dark matter production in association with a single top quark in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-23-004, 2025.
Inspire Record 2904618 DOI 10.17182/hepdata.156969

A search for the production of a single top quark in association with invisible particles is performed using proton-proton collision data collected with the CMS detector at the LHC at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. In this search, a flavor-changing neutral current produces a single top quark or antiquark and an invisible state nonresonantly. The invisible state consists of a hypothetical spin-1 particle acting as a new mediator and decaying to two spin-1/2 dark matter candidates. The analysis searches for events in which the top quark or antiquark decays hadronically. No significant excess of events compatible with that signature is observed. Exclusion limits at 95% confidence level are placed on the masses of the spin-1 mediator and the dark matter candidates, and are compared to constraints from the dark matter relic density measurements. In a vector (axial-vector) coupling scenario, masses of the spin-1 mediator are excluded up to 1.85 (1.85) TeV with an expectation of 2.0 (2.0) TeV, whereas masses of the dark matter candidates are excluded up to 0.75 (0.55) TeV with an expectation of 0.85 (0.65) TeV.

21 data tables

Prefit distribution of the magnitude of the hadronic recoil $R_{\mathrm{T}}$ in the SR. The last bin of the distribution also contains events with $R_{\mathrm{T}}$ > 1000 GeV. The distributions of background processes stem from simulation and are stacked together. A representative mono-top signal (vector coupling scenario) with a mediator mass of 1 TeV, a DM candidate mass of 150 GeV, and a cross section of 1 pb is overlaid as an orange line. The gray band represents the statistical and unconstrained systematic uncertainties in the simulated event yields.

Prefit distributions of the magnitude of the hadronic recoil $R_{\mathrm{T}}$ in the SR (t-pass) and SR (t-fail). The last bin of each distribution also contains events with $R_{\mathrm{T}}$ > 1000 GeV. The distributions of background processes stem from simulation and are stacked together. A representative mono-top signal (vector coupling scenario) with a mediator mass of 1 TeV, a DM candidate mass of 150 GeV, and a cross section of 1 pb is overlaid as an orange line. The gray band represents the statistical and unconstrained systematic uncertainties in the simulated event yields.

Prefit distributions of the magnitude of the hadronic recoil $R_{\mathrm{T}}$ in the SR (t-pass) and SR (t-fail). The last bin of each distribution also contains events with $R_{\mathrm{T}}$ > 1000 GeV. The distributions of background processes stem from simulation and are stacked together. A representative mono-top signal (vector coupling scenario) with a mediator mass of 1 TeV, a DM candidate mass of 150 GeV, and a cross section of 1 pb is overlaid as an orange line. The gray band represents the statistical and unconstrained systematic uncertainties in the simulated event yields.

More…

Version 2
Search for vector-like leptons with long-lived particle decays in the CMS muon system in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 08 (2025) 156, 2025.
Inspire Record 2902874 DOI 10.17182/hepdata.156846

A first search is presented for vector-like leptons (VLLs) decaying into a light long-lived pseudoscalar boson and a standard model $τ$ lepton. The pseudoscalar boson is assumed to have a mass below the $τ^+τ^-$ threshold, so that it decays exclusively into two photons. It is identified using the CMS muon system. The analysis is carried out using a data set of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Selected events contain at least one pseudoscalar boson decaying electromagnetically in the muon system and at least one hadronically decaying $τ$ lepton. No significant excess of data events is observed compared to the background expectation. Upper limits are set at 95% confidence level on the vector-like lepton production cross section as a function of the VLL mass and the pseudoscalar boson mean proper decay length. The observed and expected exclusion ranges of the VLL mass extend up to 700 and 670 GeV, respectively, depending on the pseudoscalar boson lifetime.

23 data tables

Distributions of the number of hits in the cluster (Nhits) for the DT category in the signal region (SR). The last histogram bin contains all overflow events.

The cluster reconstruction efficiency, including both DT and CSC clusters, as a function of the simulated r and |z| decay positions of the pseudoscalar into photons in events with MET > 200 GeV, for a VLL mass of 700 GeV and a pseudoscalar mass of 2 GeV, and a range of ctau values uniformly distributed between 0.01 and 0.1 m.

Distributions of the number of hits in the cluster (Nhits) for the CSC category in the signal region (SR). The last histogram bin contains all overflow events.

More…

Search for cascade decays of charged sleptons and sneutrinos in final states with three leptons and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 012005, 2025.
Inspire Record 2901728 DOI 10.17182/hepdata.157553

A search for cascade decays of charged sleptons and sneutrinos using final states characterized by three leptons (electrons or muons) and missing transverse momentum is presented. The analysis is based on a dataset with 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. This paper focuses on a supersymmetric scenario that is motivated by the muon anomalous magnetic moment observation, dark mattter relic density abundance, and electroweak naturalness. A mass spectrum involving light higgsinos and heavier sleptons with a bino at intermediate mass is targeted. No significant deviation from the Standard Model expectation is observed. This search enables to place stringent constraints on this model, excluding at the 95% confidence level charged slepton and sneutrino masses up to 450 GeV when assuming a lightest neutralino mass of 100 GeV and mass-degenerate selectrons, smuons and sneutrinos.

64 data tables

Distribution of $m_{3\ell}$ in SROS-on-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

Distribution of $m_{3\ell}$ in SROS-on-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

Distribution of $E_{\text{T}}^{\text{miss}}$ in SROS-on-b-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.

More…

Search for bosons of an extended Higgs sector in b quark final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 06 (2025) 144, 2025.
Inspire Record 2878311 DOI 10.17182/hepdata.155471

A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC, and correspond to an integrated luminosity of 36.7-126.9 fb$^{-1}$ depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125-1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models.

33 data tables

Signal efficiency as a function of the mass $m_\phi$ after triple b tag selection for 2017 SL (squares), 2017 FH (triangles), and 2018 FH (circles) channels.

Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2017 SL category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.

Expected and observed upper limits for the b-quark-associated Higgs boson production cross section times branching fraction of the decay into a b quark pair at 95% CL as functions of $m_\phi$ for the 2017 FH category. The vertical dashed lines indicate the boundaries of usage of the different fit ranges, as reflected in the rightmost column of Table 2.

More…

Search for long-lived charged particles using large specific ionisation loss and time of flight in 140 $fb^{-1}$ of $pp$ collisions at $\sqrt{s}\ = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 07 (2025) 140, 2025.
Inspire Record 2878503 DOI 10.17182/hepdata.158643

This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of 140 $fb^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime.

62 data tables

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.

More…

Search for hadronic decays of feebly-interacting particles at NA62

The NA62 collaboration Cortina Gil, Eduardo ; Jerhot, Jan ; Lurkin, Nicolas ; et al.
Eur.Phys.J.C 85 (2025) 571, 2025.
Inspire Record 2877075 DOI 10.17182/hepdata.156981

The NA62 experiment at CERN has the capability to collect data in a beam-dump mode, where 400 GeV protons are dumped on an absorber. In this configuration, New Physics particles, including dark photons, dark scalars, and axion-like particles, may be produced in the absorber and decay in the instrumented volume beginning approximately 80 m downstream of the dump. A search for these particles decaying in flight to hadronic final states is reported, based on an analysis of a sample of $1.4 \times 10^{17}$ protons on dump collected in 2021. No evidence of a New Physics signal is observed, excluding new regions of parameter spaces of multiple models.

66 data tables

90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, using bremsstrahlung production without the time-like form factor.

90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, including mixing and bremsstrahlung production with a time-like form factor.

90% CL upper limit in dark scalar coupling vs mass parameter space for combined di-lepton and hadronic final states.

More…