In a 35 000-picture exposure of the 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam at the Fermi National Accelerator Laboratory, 10054 interactions have been observed. The measured total cross section is $40.68 \pm 0.55$ mb, the elastic cross section is $7.89 \pm 0.52$ mb, and the average charged-particle multiplicity for inelastic events is $8.S0 \pm 0.12$.
QUOTED ERRORS INCLUDE EFFECTS OF CORRECTIONS.
No description provided.
We have made a study of the coherent reaction K + d → K 0 π + d at 2 GeV/ c , using data obtained in the Lawrence Berkeley Laboratory 25 inch bubble chamber. The cross section for this reaction is 324 ± 25 μ b, after correction for invisible K 0 decays. This reaction is dominated primarily by vector exchange. We determine the parameters of the ω trajectory to be α ω = (0.33 ± 0.04) + t .
No description provided.
SLOPE IS 9.4 +- 0.5 GEV**-2 FOR -T > 0.02 GEV**2 AND 10.4 +- 0.6 GEV**-2 FOR -TP > 0.
No description provided.
From analysis of V0 events observed in an exposure of the National Accelerator Laboratory 30-in. bubble chamber to 303−GeVc protons, we obtain these results: (1) 〈nπ0〉 rises approximately linearly with n-, implying strong coupling of neutral and charged pions, while 〈nKS0〉 is less coupled to n; (2) γ, KS0, and Λ0 production cross sections are approaching a scaling limit by 303 GeVc; (3) within the limited statistics, dσdy is flat in the central region for KS0 and low-multiplicity γ events.
No description provided.
In an exposure of the 30-in. hydrogen bubble chamber to a 303−GeVc proton beam, 2245 interactions have been observed. The measured total cross section is 39.0±1.0 mb and the average charged particle multiplicity 〈nch〉=8.86±0.16.
TOPOLOGICAL CROSS SECTIONS.
An analysis of the reaction K−p→K−pπ+π− at 2.0-GeVc incident momentum is presented. The total cross section for the reaction is 627±20 μb, based on 4519 events. The reaction is dominated by resonance production through several channels which overlap kinematically but do not appear to interferesubstantially. A maximum-likelihood procedure was used to determine the production fractions, which for the major channels are 0.44±0.02 for N*++(1236), 0.145±0.02 for Y*0(1520), 0.10±0.03 for N*+(1688), and 0.20±0.02 for simultaneous K¯*0N*0. Evidence is presented for the production of Y*+(1765) and its decay into Y*0(1520) as well as for production of Y*+(1660) with decay into K−pπ+. A four-standard-deviation enhancement is present at a K−π+ invariant mass of 690 MeV. Angular correlation data are presented for the N*++K−π−, Y*0π+π−, and K¯*0N*0 reaction channels. However, the difficulty of separating the various channels prevents a detailed study of the reaction dynamics.
No description provided.