Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at $\sqrt{s}=510$ GeV in $\vec{p}+\vec{p}$ Collisions

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.Lett. 130 (2023) 251901, 2023.
Inspire Record 2033856 DOI 10.17182/hepdata.129088

We present measurements of the cross section and double-helicity asymmetry $A_{LL}$ of direct-photon production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV. The measurements have been performed at midrapidity ($|\eta|<0.25$) with the PHENIX detector at the Relativistic Heavy Ion Collider. At relativistic energies, direct photons are dominantly produced from the initial quark-gluon hard scattering and do not interact via the strong force at leading order. Therefore, at $\sqrt{s}=510$ GeV, where leading-order-effects dominate, these measurements provide clean and direct access to the gluon helicity in the polarized proton in the gluon-momentum-fraction range $0.02<x<0.08$, with direct sensitivity to the sign of the gluon contribution.

2 data tables

Cross sections for inclusive and isolated direct photons as a function of $p_T$. Not shown are 10% absolute luminosity uncertainties.

Double helicity asymmetry $A_{LL}$ $vs$ $p_{T}$ for isolated direct-photon production in polarized $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=510$ GeV at midrapidity. Not shown are $3.9 \times 10^{-4}$ shift uncertainty from relative luminosity and 6.6% scale uncertainty from polarization.


Polarization and cross section of midrapidity J/$\psi$ production in proton-proton collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 072008, 2020.
Inspire Record 1798581 DOI 10.17182/hepdata.141538

The PHENIX experiment has measured the spin alignment for inclusive $J/\psi\rightarrow e^{+}e^{-}$ decays in $p$+$p$ collisions at $\sqrt{s}=510$ GeV at midrapidity. The angular distributions have been measured in three different polarization frames, and the three decay angular coefficients have been extracted in a full two-dimensional analysis. Previously, PHENIX saw large longitudinal net polarization at forward rapidity at the same collision energy. This analysis at midrapidity, complementary to the previous PHENIX results, sees no sizable polarization in the measured transverse momentum range of $0.0<p_T<10.0$ GeV/$c$. The results are consistent with a previous one-dimensional analysis at midrapidity at $\sqrt{s}=200$ GeV. The transverse-momentum-dependent cross section for midrapidity $J/\psi$ production has additionally been measured, and after comparison to world data we find a simple logarithmic dependence of the cross section on $\sqrt{s}$.

10 data tables

$\lambda_{\theta}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.

$\lambda_{\theta}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.

$\lambda_{\phi}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.

More…

Production of $b\bar{b}$ at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 092002, 2020.
Inspire Record 1798586 DOI 10.17182/hepdata.139988

The cross section of bottom quark-antiquark ($b\bar{b}$) production in $p$+$p$ collisions at $\sqrt{s}=510$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider. The results are based on the yield of high mass, like-sign muon pairs measured within the PHENIX muon arm acceptance ($1.2<|y|<2.2$). The $b\bar{b}$ signal is extracted from like-sign dimuons by utilizing the unique properties of neutral $B$ meson oscillation. We report a differential cross section of $d\sigma_{b\bar{b}\rightarrow \mu^\pm\mu^\pm}/dy = 0.16 \pm 0.01~(\mbox{stat}) \pm 0.02~(\mbox{syst}) \pm 0.02~(\mbox{global})$ nb for like-sign muons in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $p_T>1$ GeV/$c$, and dimuon mass of 5--10 GeV/$c^2$. The extrapolated total cross section at this energy for $b\bar{b}$ production is $13.1 \pm 0.6~(\mbox{stat}) \pm 1.5~(\mbox{syst}) \pm 2.7~(\mbox{global})~\mu$b. The total cross section is compared to a perturbative quantum chromodynamics calculation and is consistent within uncertainties. The azimuthal opening angle between muon pairs from $b\bar{b}$ decays and their $p_T$ distributions are compared to distributions generated using {\sc ps pythia 6}, which includes next-to-leading order processes. The azimuthal correlations and pair $p_T$ distribution are not very well described by {\sc pythia} calculations, but are still consistent within uncertainties. Flavor creation and flavor excitation subprocesses are favored over gluon splitting.

4 data tables

$b\bar{b}$ differential cross section measured via B meson decay to like-sign dimuons as a function of rapidity and mass. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

$b\bar{b}$ differential cross section measured via B meson decay to all dimuons as a function of rapidity and mass. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

$b\bar{b}$ invariant yield measured via B meson decay to like-sign dimuons as a function of azimuthal opening angle. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 032001, 2020.
Inspire Record 1789851 DOI 10.17182/hepdata.95883

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, $A_{LL}$, for charged pions at midrapidity ($|\eta|<0.35$) in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction $x$ range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at $\sqrt{s}=200$ GeV, which show a nonzero positive contribution of gluon spin to the proton spin.

1 data table

Double-spin asymmetries $A_{LL}$ as a function of transverse momentum for positive and negative pions.


$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

3 data tables

The total cross section times the branching ratio.

The inclusive $J/\psi$ differential cross section as a function of $p_T$ at 1.2 < $|y|$ < 2.2 at 510 GeV.

The inclusive $J/\psi$ differential cross section integrated over 0 < $p_T$ < 10 GeV/$c$ as a function of rapidity at 510 GeV.


Cross section and longitudinal single-spin asymmetry $A_L$ for forward $W^{\pm}\rightarrow\mu^{\pm}\nu$ production in polarized $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 98 (2018) 032007, 2018.
Inspire Record 1667398 DOI 10.17182/hepdata.141628

We have measured the cross section and single spin asymmetries from forward $W^{\pm}\rightarrow\mu^{\pm}\nu$ production in longitudinally polarized $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV using the PHENIX detector at the Relativistic Heavy Ion Collider. The cross sections are consistent with previous measurements at this collision energy, while the most forward and backward longitudinal single spin asymmetries provide new insights into the sea quark helicities in the proton. The charge of the W bosons provides a natural flavor separation of the participating partons.

2 data tables

Single-spin asymmetries at forward $A^{FW}_L$ and backward $A^{BW}_L$ rapidities for $p$+$p$ collisions at $\sqrt{s}$ = 510 GeV for results in 2013 and 2012, plus combined results for both years.

The total $W$ boson production cross sections for $p$+$p$ collisions at $\sqrt{s}$ = 510 GeV for $\sigma$($W^+$ $\rightarrow$ $\mu^+$) and $\sigma$($W^-$ $\rightarrow$ $\mu^-$).


Measurement of $\phi$-meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}$=510 GeV and energy dependence of $\sigma_\phi$ from $\sqrt{s}$=200 GeV to 7 TeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 98 (2018) 092006, 2018.
Inspire Record 1628651 DOI 10.17182/hepdata.142337

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section of $\phi$(1020) meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=$510 GeV via the dimuon decay channel. The integrated cross section in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $2<p_T<7$ GeV/$c$ is $\sigma_\phi=2.79 \pm 0.20\,{\rm (stat)} \pm 0.17\,{\rm (syst)} \pm 0.34\, {\rm (norm)} \times 10^{-2}$~mb. The energy dependence of $\sigma_\phi$ ($1.2<|y|<2.2$; $2<p_T<5$ GeV/$c$) is studied using the PHENIX measurements at $\sqrt{s}=$200 and 510 GeV and the Large-Hadron-Collider measurements at $\sqrt{s}=$2.76 and 7 TeV. The experimental results are compared to various event generator predictions (pythia6, pythia8, phojet, ampt, epos3, and epos-lhc).

3 data tables

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-production cross section d$\sigma_{\phi}$/dy in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV integrated in the transverse-momentum range 2 < $p_T$ < 7 GeV/$c$.

The $\phi$-meson-differential-production cross section d${}^{2}$$\sigma_{\phi}/dp_T dy$ for 1.2 < |y| < 2.2 in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV.


Angular decay coefficients of $J/\psi$ mesons at forward rapidity from $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 092003, 2017.
Inspire Record 1505176 DOI 10.17182/hepdata.141939

We report the first measurement of the full angular distribution for inclusive $J/\psi\rightarrow\mu^{+}\mu^{-}$ decays in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. The measurements are made for $J/\psi$ transverse momentum $2<p_{T}<10$ GeV/$c$ and rapidity $1.2<y<2.2$ in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient $\lambda_{\theta}$ is strongly negative at low $p_{T}$ and becomes close to zero at high $p_{T}$, while the azimuthal coefficient $\lambda_{\phi}$ is close to zero at low $p_{T}$, and becomes slightly negative at higher $p_{T}$. The frame-independent coefficient $\tilde{\lambda}$ is strongly negative at all $p_{T}$ in all frames. The data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

4 data tables

Polar angular decay coefficient $\lambda_{\theta}$ as a function of transverse momentum for four reference frames and three $p_T$ bins. The numbers in the CS frame for the $p_T$ = 2-3 GeV/$c$ bin are 90% confidence level upper limits.

"Mixed" angular decay coefficient $\lambda_{\theta \phi}$ as a function of transverse momentum for four reference frames and three $p_T$ bins.

Azimuthal angular decay coefficient $\lambda_{\phi}$ as a function of transverse momentum for four reference frames and three $p_T$ bins.

More…

Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in $p$$+$$p$ collisions at $\sqrt{s}$=510 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 072002, 2017.
Inspire Record 1486678 DOI 10.17182/hepdata.143252

Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. Correlations of charged hadrons of $0.7<p_T<10$ GeV/$c$ with $\pi^0$ mesons of $4<p_T<15$ GeV/$c$ or isolated direct photons of $7<p_T<15$ GeV/$c$ are used to study nonperturbative effects generated by initial-state partonic transverse momentum and final-state transverse momentum from fragmentation. The nonperturbative behavior is characterized by measuring the out-of-plane transverse momentum component $p_{\rm out}$ perpendicular to the axis of the trigger particle, which is the high-$p_T$ direct photon or $\pi^0$. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta ($p_T^{\rm trig}$). The Gaussian widths and root mean square of $p_{\rm out}$ are reported as a function of the interaction hard scale $p_T^{\rm trig}$ to investigate possible transverse-momentum-dependent evolution differences between the $\pi^0$-h$^\pm$ and direct photon-h$^\pm$ correlations and factorization breaking effects. The widths are found to decrease with $p_T^{\rm trig}$, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in $p$$+$$p$ collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.

12 data tables

Per-trigger yield of charged hadrons shown as a function of the azimuthal angle between the $\pi^0$ trigger particle and associated charged hadron.

Per-trigger yield of charged hadrons shown as a function of the azimuthal angle between the direct photon trigger particle and associated charged hadron.

$\pi^0$-h$^{\pm}$ $\sqrt{\langle p^2_{out} \rangle}$ values from fits to the $\Delta \phi$ correlations.

More…

Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p

1 data table

$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.


Inclusive cross section and double-helicity asymmetry for $\pi^{0}$ production at midrapidity in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 011501, 2016.
Inspire Record 1396712 DOI 10.17182/hepdata.144863

PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $\pi^0$ production at midrapidity from $p$$+$$p$ collisions at $\sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $\pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $\sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $\pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $\Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $x\sim0.01$, and thus provide additional constraints on the value of $\Delta G$. The results confirm the evidence for nonzero $\Delta G$ using a different production channel in a complementary kinematic region.

2 data tables

The neutral pion production cross section at midrapidity in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV as a function of $p_T$ and NLO pQCD calculations for theory scales $\mu = p_T/2$ (dotted line), $p_T$ (solid line) and 2$p_T$ (dashed line), with $\mu$ representing equal factorization, renormalization, and fragmentation scales.

$A_{LL}$ with point-to-point uncertainty $\delta A_{LL}$ vs $p_T$ for $\pi^0$ production at midrapidity in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV. Not included in the figure/table are the correlated for all points scale systematic uncertainty of 6.5% (scales both the values and point-to-point uncertainties by the same factor). Correlated relative luminosity (shift) uncertainity of 3.6e-4 (shifts all points by the same value).


Measurement of parity-violating spin asymmetries in W$^{\pm}$ production at midrapidity in longitudinally polarized $p$$+$$p$ collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 051103, 2016.
Inspire Record 1365091 DOI 10.17182/hepdata.73691

We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.

1 data table

Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.


Closing the Door for Dark Photons as the Explanation for the Muon g-2 Anomaly

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 031901, 2015.
Inspire Record 1313628 DOI 10.17182/hepdata.143253

The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment $(g-2)_\mu$ deviates from SM calculations by 3.6$\sigma$. Several theoretical models attribute this to the existence of a "dark photon," an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, $U$, in $\pi^0,\eta \rightarrow \gamma e^+e^-$ decays and obtained upper limits of $\mathcal{O}(2\times10^{-6})$ on $U$-$\gamma$ mixing at 90% CL for the mass range $30<m_U<90$ MeV/$c^2$. Combined with other experimental limits, the remaining region in the $U$-$\gamma$ mixing parameter space that can explain the $(g-2)_\mu$ deviation from its SM value is nearly completely excluded at the 90% confidence level, with only a small region of $29<m_U<32$ MeV/$c^2$ remaining.

5 data tables

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

More…

Cross Section and Transverse Single-Spin Asymmetry of $\eta$ Mesons in $p^{\uparrow}+p$ Collisions at $\sqrt{s}=200$ GeV at Forward Rapidity

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 072008, 2014.
Inspire Record 1300542 DOI 10.17182/hepdata.64267

We present a measurement of the cross section and transverse single-spin asymmetry ($A_N$) for $\eta$ mesons at large pseudorapidity from $\sqrt{s}=200$~GeV $p^{\uparrow}+p$ collisions. The measured cross section for $0.5<p_T<5.0$~GeV/$c$ and $3.0<|\eta|<3.8$ is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries $A_N$ have been measured as a function of Feynman-$x$ ($x_F$) from $0.2<|x_{F}|<0.7$, as well as transverse momentum ($p_T$) from $1.0<p_T<4.5$~GeV/$c$. The asymmetry averaged over positive $x_F$ is $\langle{A_{N}}\rangle=0.061{\pm}0.014$. The results are consistent with prior transverse single-spin measurements of forward $\eta$ and $\pi^{0}$ mesons at various energies in overlapping $x_F$ ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in $p^{\uparrow}+p$ collisions.

4 data tables

The measured ETA meson cross section, E*D3(SIG)/DP**3, versus PT at forward rapidity. The statistical and systematic uncertainties are type-A and type-B uncertainties respectively.

ASYM(PEAK) and ASYM(BG) for ETA mesons measured as a function of XF in the range 0.3 < ABS(XF) < 0.7 from the 4X4B triggered dataset. The values represented are the weighted mean of the South and North MPC (Muon Piston Calorimeter). The uncertainties listed are statistical only.

ASYM for ETA mesons measured as a function of XF in the range 0.2 < ABS(XF) < 0.7. Uncertainties listed are those due to the statistics, the XF uncorrelated uncertainties due to extracting the yields, and the correlated relative luminosity uncertainty.

More…

Low-mass vector-meson production at forward rapidity in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 052002, 2014.
Inspire Record 1296835 DOI 10.17182/hepdata.64159

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.

3 data tables

Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.